Skip to main content
University of North Dakota
University of North Dakota
    • Email
    • Blackboard
    • Campus Connection
    • Employee Self-Service (HRMS)
    • Starfish
    • Degree Map
  • Directory
  • Calendar
  • Scope of this search:
College of Arts & Sciences
College of Arts & Sciences
  • About
  • Academics
  • Current Students
  • Faculty & Staff
  • Research
University of North Dakota
  • About
  • Academics
  • Current Students
  • Faculty & Staff
  • Research
  • Request Info
  • Visit
  • Apply
Scope of this search:
  • Request Info
  • Visit
  • Apply
Scope of this search:
College of Arts & Sciences
  • Home
  • Academics
  • Physics & Astrophysics
  • Colloquia
  • 2014 15
  • Colloquium: Prof. John Page
Skip Section Navigation
  • Physics & Astrophysics
  • Courses
  • Scholarships
  • Research
  • Faculty & Staff
  • News & Events
  • Colloquia Show/hide children
    • 2017-2018
    • 2015-2016
    • 2014-2015
    • 2013-2014
    • 2012-2013

Colloquium: Prof. John Page

Prof. John H. Page
Department of Physics
and Astronomy,

University of Manitoba

Friday Oct 3, 4:00–5:00pm, 211 Witmer Hall. Refreshments at 3:30pm.

Waves in Complex Media: from super-resolution focusing in phononic crystals
to Anderson localization in three-dimensional "mesoglasses"

Waves in complex media are often strongly scattered due to mesoscopic heterogeneities, leading to unusual and fascinating phenomena which continue to challenge our basic understanding of wave physics. Examples range from strikingly large variations in wave speeds to unusual refraction and tunneling effects, and even to the complete inhibition of wave propagation, due to disorder, that may occur in very strongly scattering samples when waves become localized. Ultrasonic techniques are well suited for investigating such phenomena since complete information about wave propagation (both amplitude and phase, in both time and space) can be measured directly in samples with well controlled internal structures. After an introduction to some of the general features of ultrasonic wave transport in both ordered and disordered mesoscopic materials (e.g., phononic crystals and "mesoglasses"), I will focus on our recent progress in answering the long–standing question of whether or not the Anderson localization of classical waves can really occur in three-dimensional disordered materials. This work is making it possible to study aspects of classical wave localization that have not previously been amenable to experimental investigation, and is contributing to the current resurgence of interest in localization across several domains of physics.

Department of Physics & Astrophysics
Witmer Hall Room 213
101 Cornell St Stop 7129
Grand Forks, ND 58202-7129
P 701.777.2911
physics@UND.edu
  • Facebook
We use cookies on this site to enhance your user experience.

By clicking any link on this page you are giving your consent for us to set cookies, Privacy Information.

College of Arts & Sciences

Columbia Hall, Room 1930
501 N Columbia Rd Stop 8038
Grand Forks, ND 58202-8038

UND.artssci@UND.edu |  701.777.2749
  • Instagram
  • Facebook
  • Twitter
  • LinkedIn
  • Library
  • Essential Studies
  • One-Stop
  • Registrar
  • Bookstore
  • Contact UND
  • Campus Map
  • Employment
  • Tech Support
  • Make a Gift
University of North Dakota

© 2022 University of North Dakota - Grand Forks, ND - Member of ND University System

  • Accessibility & Website Feedback
  • Terms of Use & Privacy
  • Notice of Nondiscrimination
  • Student Disclosure Information
  • Title IX
©