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PREFACE

A Note on Using this Text
Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay better understand what you will find beyond this
page.

This text comprises a three‐volume series on Calculus. The first part covers
material taught in many “Calculus 1” courses: limits, derivatives, and the basics
of integration, found in Chapters 1 through 6. The second text covers materi‐
al often taught in “Calculus 2”: integration and its applications, along with an
introduction to sequences, series and Taylor Polynomials, found in Chapters 7
through 10. The third text covers topics common in “Calculus 3” or “Multi‐
variable Calculus”: parametric equations, polar coordinates, vector‐valued func‐
tions, and functions of more than one variable, found in Chapters 11 through 15.
All three are available separately for free.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased separately.

A result of this splitting is that sometimes material is referenced that is not
contained in the present text. The context should make it clear whether the
“missing” material comes before or after the current portion. Downloading the
appropriate pdf, or the entireAPEX Calculus LT pdf, will give access to these topics.

For Students: How to Read this Text
Mathematics textbooks have a reputation for being hard to read. High‐level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower‐level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming materi‐
al, hopefully setting the stage for “why you should care,” and ends with a look
ahead to see how the just‐learned material helps address future problems. Ad‐
ditionally, some chapters include a section zero, which provides a basic review
and practice problems of pre‐calculus skills. Since this content is a pre‐requisite
for calculus, reviewing and mastering these skills are considered your responsi‐
bility. This means that it is your responsibility to seek assistance outside of class
from your instructor, a math resource center or other math tutoring available
on‐campus. A solid understanding of these skills is essential to your success in
solving calculus problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en‐
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is



helpful; sometimes it is confusing. When the steps are illustrating a new tech‐
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.

Some proofs have been delayed until later (or omitted completely). In math‐
ematics, proving something is always true is extremely important, and entails
much more than testing to see if it works twice. However, students often are
confused by the details of a proof, or become concerned that they should have
been able to construct this proof on their own. To alleviate this potential prob‐
lem, we do not include the more difficult proofs in the text. The interested read‐
er is highly encouraged to find other proofs online or from their instructor. In
most cases, one is very capable of understanding what a theorem means and
how to apply it without knowing fully why it is true.

Work through the examples. The best way to learn mathematics is to do it.
Reading about it (or watching someone else do it) is a poor substitute. For this
reason, every page has a place for you to put your notes so that you can work
out the examples. That being said, sometimes it is useful to watch someone
work through an example. For this reason, this text also provides links to online
videos where someone is working through a similar problem. If you want even
more videos, these are generally chosen from

• Khan Academy: https://www.khanacademy.org/
• Math Doctor Bob: http://www.mathdoctorbob.org/
• Just Math Tutorials: http://patrickjmt.com/ (unfortunately, they’re
not well organized)

Some other sites you may want to consider are
• Larry Green’s Calculus Videos: http://www.ltcconline.net/greenl/

courses/105/videos/VideoIndex.htm
• Mathispower4u: http://www.mathispower4u.com/
• Yay Math: http://www.yaymath.org/ (for prerequisite material)

All of these sites are completely free (although some will ask you to donate).
Here’s a sample one:

Watch the video:
Practical Advice for Those Taking College Calculus
at
https://youtu.be/ILNfpJTZLxk

Thanks from Greg Hartman
There aremanypeoplewhodeserve recognition for the important role they have
played in the development of this text. First, I thank Michelle for her support
and encouragement, even as this “project from work” occupied my time and
attention at home. Many thanks to Troy Siemers, whose most important con‐
tributions extend far beyond the sections he wrote or the 227 figures he coded
in Asymptote for 3D interaction. He provided incredible support, advice and
encouragement for which I am very grateful. My thanks to Brian Heinold and
Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for read‐
ing through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
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numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc III while I was still writing the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu‐
nity far above & beyond what I expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. I am blessed to
have so many people give of their time to make this book better.

APEX — Affordable Print and Electronic teXts

APEX is a consortiumof authorswho collaborate to produce high‐quality, low‐cost
textbooks. The current textbook‐writing paradigm is facing a potential revolu‐
tion as desktop publishing and electronic formats increase in popularity. How‐
ever, writing a good textbook is no easy task, as the time requirements alone
are substantial. It takes countless hours of work to produce text, write exam‐
ples and exercises, edit and publish. Through collaboration, however, the cost
to any individual can be lessened, allowing us to create texts that we freely dis‐
tribute electronically and sell in printed form for an incredibly low cost. Having
said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Calcu‐
lus would not exist had not the Virginia Military Institute, through a generous
Jackson‐Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons Attri‐
bution — Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at https://github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.
Greg Hartman

Creating APEX LT
Starting with the source at https://github.com/APEXCalculus, faculty at
the University of North Dakota made several substantial changes to create APEX
Late Transcendentals. The most obvious change was to rearrange the text to
delay proving the derivative of transcendental functions until Calculus 2. UND
added Sections 7.1 and 7.3, adapted several sections from other resources, cre‐
ated the prerequisite sections, included links to videos andGeogebra, and added
several examples and exercises. In the end, every section had some changes
(some more substantial than others), resulting in a document that is about 10%
longer. The source files can now be found at
https://github.com/teepeemm/APEXCalculusLT_Source.

Extra thanks are due to Michael Corral for allowing us to use portions of his
Vector Calculus, available at www.mecmath.net/ (specifically, Section 13.9 and
the Jacobian in Section 14.7) and to Paul Dawkins for allowing us to use portions
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of his online math notes from tutorial.math.lamar.edu/ (specifically, Sec‐
tions 8.5 and 9.7, as well as “Area with Parametric Equations” in Section 10.3).
The work on Calculus III was partially supported by the NDUS OER Initiative.

Electronic Resources
A distinctive feature of APEX is interactive, 3D graphics in the .pdf version. Nearly
all graphs of objects in space can be rotated, shifted, and zoomed in/out so the
reader can better understand the object illustrated.

Currently, the only pdf viewers that support these 3D graphics for comput‐
ers are Adobe Reader & Acrobat. To activate the interactive mode, click on the
image. Once activated, one can click/drag to rotate the object and use the scroll
wheel on amouse to zoom in/out. (A great way to investigate an image is to first
zoom in on the page of the pdf viewer so the graphic itself takes up much of the
screen, then zoom inside the graphic itself.) A CTRL‐click/drag pans the object
left/right or up/down. By right‐clicking on the graph one can access a menu of
other options, such as changing the lighting scheme or perspective. One can
also revert the graph back to its default view. If you wish to deactivate the inter‐
activity, one can right‐click and choose the “Disable Content” option.

The situation is more interesting for tablets and smart‐
phones. The 3D graphics files have been arrayed at https:
//sites.und.edu/timothy.prescott/apex/prc/. At
the bottom of the page are links to Android and iOS apps
that can display the interactive files. The QR code to the
right will take you to that page.

Additionally, a web version of the book is available at https://sites.und.
edu/timothy.prescott/apex/web/. While we have striven to make the pdf
accessible for non‐print formats, html is far better in this regard.
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Calculus II





7: INVERSE FUNCTIONS AND
L’HÔPITAL’S RULE

This chapter completes our differentiation toolkit. The first and most important
tool will be how to differentiate inverse functions. We’ll be able to use this to
differentiate exponential and logarithmic functions, which we stated in Theo‐
rem 2.3.1 but did not prove.

7.1 Inverse Functions

We say that two functions f and g are inverses if g(f(x)) = x for all x in the
domain of f and f(g(x)) = x for all x in the domain of g. A function can only
have an inverse if it is one‐to‐one, i.e. if we never have f(x1) = f(x2) for different
elements x1 and x2 of the domain. This is equivalent to saying that the graph of
the functionpasses the horizontal line test. The inverse of f is denoted f−1, which
should not be confused with the function 1/f(x).

Key Idea 7.1.1 Inverse Functions
For a one‐to–one function f,

• The domain of f−1 is the range of f; the range of f−1 is the domain
of f.

• f−1(f(x)) = x for all x in the domain of f.

• f(f−1(x)) = x for all x in the domain of f−1.

• The graph of y = f−1(x) is the reflection across y = x of the graph
of y = f(x).

• y = f−1(x) if and only if f(y) = x and y is in the domain of f.

Notes:
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

Watch the video:
Finding the Inverse of a Function or Showing One
Does not Exist, Ex 3 at
https://youtu.be/BmjbDINGZGg

To determine whether or not f and g are inverses for each other, we check
to see whether or not g(f(x)) = x for all x in the domain of f,and f(g(x)) = x for
all x in the domain of g.

−1 1 2

−1

1
(−0.5, 0.375)

(0.375,−0.5)

(1, 1.5)

(1.5, 1)

x

y

Figure 7.1.1: A function f along with
its inverse f−1. (Note how it does not
matter which function we refer to as f;
the other is f−1.)

Example 7.1.1 Verifying Inverses
Determine whether or not the following pairs of functions are inverses:

1. f(x) = 3x+ 1; g(x) =
x− 1
3

2. f(x) = x3 + 1; g(x) = x1/3 − 1

SOLUTION

1. To check the composition we plug f(x) in for x in the definition of g as
follows:

g(f(x)) =
f(x)− 1

3
=

(3x+ 1)− 1
3

=
3x
3

= x

So g(f(x)) = x for all x in the domain of f. Likewise, you can check that
f(g(x)) = x for all x in the domain of g, so f and g are inverses.

2. If we try to proceed as before, we find that:

g(f(x)) = (f(x))1/3 − 1 = (x3 + 1)1/3 − 1

This doesn’t seem to be the same as the identity function x. To verify
this, we find a number a in the domain of f and show that g(f(a)) ̸= a
for that value. Let’s try x = 1. Since f(1) = 13 + 1 = 2, we find that
g(f(1)) = g(2) = 21/3−1 ≈ 0.26. Since g(f(1)) ̸= 1, these functions are
not inverses.

Functions that are not one‐to‐one.

−2 2

2

4
(−2, 4) (2, 4)

x

y

Figure 7.1.2: The function f(x) = x2 is
not one‐to‐one.

Unfortunately, not every function we would like to find an inverse for is one‐to‐
one. For example, the function f(x) = x2 is not one‐to‐one because f(−2) =
f(2) = 4. If f−1 is an inverse for f, then f−1(f(−2)) = −2 implies that f−1(4) =

Notes:
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7.1 Inverse Functions

−2. On the other hand, f−1(f(2)) = 2, so f−1(4) = 2. We cannot have it both
ways if f−1 is a function, so no such inverse exists. We can find a partial solution
to this dilemma by restricting the domain of f. There are many possible choic‐
es, but traditionally we restrict the domain to the interval [0,∞). The function
f−1(x) =

√
x is now an inverse for this restricted version of f.

The inverse sine function

We consider the function f(x) = sin x, which is not one‐to‐one. A piece of the
graph of f is in Figure 7.1.3(a). In order to find an appropriate restriction of the
domain of f, we look for consecutive critical points where f takes on its minimum
and maximum values. In this case, we use the interval [−π/2, π/2]. We define
the inverse of f on this restricted range by y = sin−1 x if and only if sin y = x
and−π/2 ≤ y ≤ π/2. The graph is a reflection of the graph of g across the line
y = x, as seen in Figure 7.1.3(b).

−π − π
2

π
2

π

−1

1

x

y

− π
2 −1 1 π

2

− π
2

−1

1

π
2

sin x

sin−1 x

x

y

(a) (b)

Figure 7.1.3: (a) A portion of y = sin x. (b) A one‐to‐one portion of y = sin x along with
y = sin−1 x.

The inverse tangent function

Next we consider the function f(x) = tan x, which is also not one‐to‐one. A
piece of the graph of f is given in Figure 7.1.4(a). In order to find an interval on
which the function is one‐to‐one and on which the function takes on all values
in the range, we use an interval between consecutive vertical asymptotes. Tra‐
ditionally, the interval (−π/2, π/2) is chosen. Note that we choose the open
interval in this case because the function f is not defined at the endpoints. So
we define y = tan−1 x if and only if tan y = x and−π/2 < y < π/2. The graph
of y = tan−1 x is shown in Figure 7.1.4(b). Also note that the vertical asymp‐
totes of the original function are reflected to become horizontal asymptotes of
the inverse function.

Notes:
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− 3π
2

−π − π
2

π
2

π 3π
2

−2

2

x

y

− π
2

π
2

− π
2

π
2

tan x

tan−1 x x

y

(a) (b)

Figure 7.1.4: (a) A portion of y = tan x. (b) A one‐to‐one portion of y = tan x along
with y = tan−1.

The other inverse trigonometric functions are defined in a similar fashion.
The resulting domains and ranges are summarized in Figure 7.1.5.

Function
Restricted
Domain Range

Inverse
Function Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]
cos x [0, π] [−1, 1] cos−1 x [−1, 1] [0, π]
tan x (−π/2, π/2) (−∞,∞) tan−1 x (−∞,∞) (−π/2, π/2)
csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]
sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1 x (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]
cot x (0, π) (−∞,∞) cot−1 x (−∞,∞) (0, π)

Figure 7.1.5: Domains and ranges of the trigonometric and inverse trigonometric func‐
tions.

Example 7.1.2 Evaluating Inverse Trigonometric Functions
Find exact values for the following:

Sometimes, arcsin is used instead
of sin−1. Similar “arc” functions are
used for the other inverse trigono‐
metric functions as well.

1. tan−1(1)

2. cos(sin−1(
√
3/2))

3. sin−1(sin(7π/6))

4. tan(cos−1(11/15))

SOLUTION

1. tan−1(1) = π/4

2. cos(sin−1(
√
3/2)) = cos(π/3) = 1/2

3. Since 7π/6 is not in the range of the inverse sine function, we should be
careful with this one.

sin−1(sin(7π/6)) = sin−1(−1/2) = −π/6.

Notes:
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7.1 Inverse Functions

4. Since we don’t know the value of cos−1(11/15), we let θ stand for this
value. We know that θ is an angle between 0 and π and that cos(θ) =
11/15. In Figure 7.1.6, we use this information to construct a right triangle
with angle θ, where the adjacent side over the hypotenuse must equal
11/15. Applying the Pythagorean Theorem we find that

θ

11

y15

Figure 7.1.6: A right triangle for the situ‐
ation in Example 7.1.2 (4).

y =
√

152 − 112 =
√
104 = 2

√
26.

Finally, we have:

tan(cos−1(11/15)) = tan(θ) =
2
√
26

11
.

Notes:
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Exercises 7.1
Terms and Concepts
1. T/F: Every function has an inverse.
2. In your own words explain what it means for a function to

be “one to one.”
3. If (1, 10) lies on the graph of y = f(x), what can be said

about the graph of y = f−1(x)?
4. If a function doesn’t have an inverse, what can we do to

help it have an inverse?

Problems
In Exercises 5–6, given the graph of f, sketch the graph of f−1.

5.

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−8
−7
−6
−5
−4
−3
−2
−1

1
2
3
4
5
6
7
8

f(x)

x

y

6.

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−8
−7
−6
−5
−4
−3
−2
−1

1
2
3
4
5
6
7
8

f(x)

x

y

In Exercises 7–10, verify that the given functions are inverses.

7. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

8. f(x) = x2+6x+11, x ≥ −3 and g(x) =
√
x− 2−3, x ≥ 2

9. f(x) = 3
x− 5

, x ̸= 5 and g(x) = 3+ 5x
x

, x ̸= 0

10. f(x) = x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 11–14, find a restriction of the domain of the given
function on which the function will have an inverse.

11. f(x) =
√
16− x2

12. g(x) =
√
x2 − 16

13. r(t) = t2 − 6t+ 9

14. f(x) = 1−
√
x

1+
√
x

In Exercises 15–18, find the inverse of the given function.

15. f(x) = x+ 1
x− 2

16. f(x) = x2 + 4

17. f(x) = ex+3 − 2

18. f(x) = ln(x− 5) + 1

In Exercises 19–28, find the exact value.

19. tan−1(0)

20. tan−1(tan(π/7))

21. cos(cos−1(−1/5))

22. sin−1(sin(8π/3))

23. sin(tan−1(1))

24. sec(sin−1(−3/5))

25. cos(tan−1(3/7))

26. sin−1(−
√
3/2)

27. cos−1(−
√
2/2)

28. cos−1(cos(8π/7))

In Exercises 29–32, simplify the expression.

29. sin
(
tan−1 x√

4−x2

)
30. tan

(
sin−1 x√

x2+4

)
31. cos

(
sin−1 5√

x2+25

)
32. cot

(
cos−1 3√

x

)
33. Show that for any x in the domain of sec−1 we have

sec−1 x = cos−1 1
x .

34. Show that for |x| ≤ 1 we have cos−1 x = π
2 − sin−1 x.

Hint: Recall the cofunction identity cos θ = sin( π
2 − θ) for

all θ.
35. Show that for any x we have cot−1 x = π

2 − tan−1 x.

36. Show that for |x| ≥ 1 we have csc−1 x = π
2 − sec−1 x.

37. A mass attached to a spring oscillates vertically about the
equilibrium position y = 0 according to the function
y(t) = e−t(cos(

√
3t) + 1√

3 sin(
√
3t)). Find the first posi‐

tive time t for which y(t) = 0.
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7.2 Derivatives of Inverse Functions

7.2 Derivatives of Inverse Functions
In this section we will figure out how to differentiate the inverse of a function.
To do so, we recall that if f and g are inverses, then f(g(x)) = x for all x in the
domain of f. Differentiating and simplifying yields:

f(g(x)) = x
f ′(g(x))g ′(x) = 1

g ′(x) =
1

f ′(g(x))
assuming f ′(x) is nonzero

Note that the derivation above assumes that the function g is differentiable. It
is possible to prove that gmust be differentiable if f ′ is nonzero, but the proof is
beyond the scope of this text. However, assuming this fact we have shown the
following:

Theorem 7.2.1 Derivatives of Inverse Functions
Let f be differentiable and one‐to‐one on an open interval I, where
f ′(x) ̸= 0 for all x in I, let J be the range of f on I, let g be the inverse
function of f, and let f(a) = b for some a in I. Then g is a differentiable
function on J, and in particular,(

f−1)′ (b) = g ′(b) =
1

f ′(a)(
f−1)′ (x) = g ′(x) =

1
f ′(g(x))

The results of Theorem7.2.1 are not trivial; the notationmay seemconfusing
at first. Careful consideration, along with examples, should earn understanding.

Watch the video:
Derivative of an Inverse Function, Ex 2 at
https://youtu.be/RKfGMX0pn2k

In the next example we apply Theorem 7.2.1 to the arcsine function.

Notes:
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

Example 7.2.1 Finding the derivative of an inverse trigonometric function
Let y = sin−1 x. Find y ′ using Theorem 7.2.1.

SOLUTION Adopting our previously defined notation, let g(x) = sin−1 x
and f(x) = sin x. Thus f ′(x) = cos x. Applying Theorem 7.2.1, we have

g ′(x) =
1

f ′(g(x))

=
1

cos(sin−1 x)
.

y
√
1 − x2

x
1

Figure 7.2.1: A right triangle defined by
y = sin−1(x/1) with the length of the
third leg found using the Pythagorean
Theorem.

This last expression is not immediately illuminating. Drawing a figure will
help, as shown in Figure 7.2.1. Recall that the sine function can be viewed as
taking in an angle and returning a ratio of sides of a right triangle, specifical‐
ly, the ratio “opposite over hypotenuse.” This means that the arcsine function
takes as input a ratio of sides and returns an angle. The equation y = sin−1 x
can be rewritten as y = sin−1(x/1); that is, consider a right triangle where the
hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.
Therefore cos(sin−1 x) = cos y =

√
1− x2/1 =

√
1− x2, resulting in

d
dx
(
sin−1 x

)
= g ′(x) =

1√
1− x2

.

Remember that the input x of the arcsine function is a ratio of a side of a
right triangle to its hypotenuse; the absolute value of this ratio will be less than
1. Therefore 1− x2 will be positive.

− π
2 − π

4
π
4

π
2

−1

1

y = sin x

( π
3 ,

√
3

2 )

x

y

−2 −1 1 2

− π
2

− π
4

π
4

π
2

y = sin−1 x

(
√

3
2 , π

3 )

Figure 7.2.2: Graphs of y = sin x and
y = sin−1 x along with corresponding
tangent lines.

In order tomake y = sin x one‐to‐one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = sin−1 x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the derivative of
the arcsine function is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach vertical lines with undefined slopes.

In Figure 7.2.2 we see f(x) = sin x and f−1(x) = sin−1 x graphed on their re‐
spective domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying Theorem 7.2.1 yet again: at corresponding points, a function and its
inverse have reciprocal slopes.

Notes:
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Using similar techniques, we can find the derivatives of all the inverse trigo‐
nometric functions after first restricting their domains according to Figure 7.1.5
to allow them to be invertible.

Theorem 7.2.2 Derivatives of Inverse Trigonometric Functions
The inverse trigonometric functions are differentiable on all open sets contained
in their domains (as listed in Figure 7.1.5) and their derivatives are as follows:

1.
d
dx
(
sin−1 x

)
=

1√
1− x2

2.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

3.
d
dx
(
tan−1 x

)
=

1
1+ x2

4.
d
dx
(
cos−1 x

)
= − 1√

1− x2

5.
d
dx
(
csc−1 x

)
= − 1

|x|
√
x2 − 1

6.
d
dx
(
cot−1 x

)
= − 1

1+ x2

Note how the last three derivatives are merely the negatives of the first
three, respectively. Because of this, the first three are used almost exclusive‐
ly throughout this text.

Example 7.2.2 Finding derivatives of inverse functions
Find the derivatives of the following functions:

1. f(x) = cos−1(x2) 2. g(x) =
sin−1 x√
1− x2

3. f(x) = sin−1(cos x)

SOLUTION

1. We use Theorem 7.2.2 and the Chain Rule to find:

f ′(x) = − 1√
1− (x2)2

(2x) = − 2x√
1− x4

2. We use Theorem 7.2.2 and the Quotient Rule to compute:

g ′(x) =

(
1√
1−x2

)√
1− x2 − (sin−1 x)

(
1

2
√
1−x2 (−2x)

)
(√

1− x2
)2

=

√
1− x2 + x sin−1 x(√

1− x2
)3

Notes:
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

3. We apply Theorem 7.2.2 and the Chain Rule again to compute:

f ′(x) =
1√

1− cos2 x
(− sin x)

=
− sin x√
sin2 x

=
− sin x
|sin x|

.

Theorem 7.2.2 allows us to integrate some functions that we could not inte‐
grate before. For example,∫

dx√
1− x2

= sin−1 x+ C.

Combining these formulas with u‐substitution yields the following:

Theorem 7.2.3 Integrals Involving Inverse Trigonometric
Functions

Let a > 0. Then

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

We will look at the second part of this theorem. The other parts are similar
and are left as exercises.

First we note that the integrand involves the number a2, but does not explic‐
itly involve a. We make the assumption that a > 0 in order to simplify what
follows. We can rewrite the integral as follows:∫

dx√
a2 − x2

=

∫
dx√

a2(1− (x/a)2)
=

∫
dx

a
√

1− (x/a)2

Notes:
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7.2 Derivatives of Inverse Functions

We next use the substitution u = x/a and du = dx/a to find:∫
dx

a
√

1− (x/a)2
=

∫
a

a
√
1− u2

du

=

∫
du√
1− u2

= sin−1 u+ C
= sin−1(x/a) + C

We conclude this section with several examples.

Example 7.2.3 Finding antiderivatives involving inverse functions
Find the following integrals.

1.
∫

dx
100+ x2

2.
∫

sin−1 x√
1− x2

dx 3.
∫

dx
x2 + 2x+ 5

SOLUTION

1.
∫

dx
100+ x2

=

∫
dx

102 + x2
=

1
10

tan−1(x/10) + C

2. We use the substitution u = sin−1 x and du = dx√
1−x2 to find:∫

sin−1 x√
1− x2

dx =
∫

u du =
1
2
u2 + C =

1
2
(
sin−1 x

)2
+ C

3. This does not immediately look like one of the forms in Theorem 7.2.3,
but we can complete the square in the denominator to see that∫

dx
x2 + 2x+ 5

=

∫
dx

(x2 + 2x+ 1) + 4
=

∫
dx

4+ (x+ 1)2

We now use the substitution u = x+ 1 and du = dx to find:∫
dx

4+ (x+ 1)2
=

∫
du

4+ u2

=
1
2
tan−1(u/2) + C =

1
2
tan−1

(
x+ 1
2

)
+ C.

Notes:
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Exercises 7.2
Terms and Concepts
1. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what

can be said about y = f−1(x)?
2. Since d

dx (sin
−1 x + cos−1 x) = 0, what does this tell us

about sin−1 x+ cos−1 x?

Problems
In Exercises 3–8, an invertible function f(x) is given along with
a point that lies on its graph. Using Theorem 7.2.1, evaluate(
f−1)′ (x) at the indicated value.

3. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

4. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

5. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

6. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

7. f(x) = 1
1+ x2

, x ≥ 0
Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

8. f(x) = 6e3x
Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 9–18, compute the derivative of the given func‐
tion.

9. h(t) = sin−1(2t)
10. f(t) = sec−1(2t)
11. g(x) = tan−1(2x)
12. f(x) = x sin−1 x

13. g(t) = sin t cos−1 t

14. f(t) = et ln t

15. h(x) = sin−1 x
cos−1 x

16. g(x) = tan−1(
√
x)

17. f(x) = sec−1(1/x)
18. f(x) = sin(sin−1 x)

In Exercises 19–22, compute the derivative of the given func‐
tion in two ways:

(a) By simplifying first, then taking the derivative, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

19. f(x) = sin(sin−1 x)

20. f(x) = tan−1(tan x)

21. f(x) = sin(cos−1 x)

22. f(x) = sin(tan−1 x)

In Exercises 23–24, find the equation of the line tangent to the
graph of f at the indicated x value.

23. f(x) = sin−1 x at x =
√

2
2

24. f(x) = cos−1(2x) at x =
√

3
4

In Exercises 25–30, compute the indicated integral.

25.
∫ 1/2

1/
√

2

2√
1− x2

dx

26.
∫ √

3

0

4
9+ x2

dx

27.
∫

sin−1 r√
1− r2

dr

28.
∫

x3

4+ x8
dx

29.
∫

et√
10− e2t

dt

30.
∫

1√
x(1+ x)

dx

31. A regulation hockey goal is 6 feet wide. If a player is skat‐
ing towards the end line on a line perpendicular to the end
line and 10 feet from the imaginary line joining the center
of one goal to the center of the other, the angle between
the player and the goal first increases and then begins to
decrease. In order tomaximize this angle, how far from the
end line should the player be when they shoot the puck?

θ

6 ft

10 ft
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7.3 Exponential and Logarithmic Functions

7.3 Exponential and Logarithmic Functions

In this section we will define general exponential and logarithmic functions and
find their derivatives.

General exponential functions

1

1

2

x

y

Figure 7.3.1: The function 2x for rational
values of x.

Consider first the function f(x) = 2x. If x is rational, then we know how to
compute 2x. What do we mean by 2π though? We compute this by first looking
at 2r for rational numbers r that are very close to π, then finding a limit. In our
case we might compute 23, 23.1, 23.14, etc. We then define 2π to be the limit of
these numbers. Note that this is actually a different kind of limit than we have
dealt with before since we only consider rational numbers close to π, not all real
numbers close to π. We will see one way tomake this more precise in Chapter 9.
Graphically, we can plot the values of 2x for x rational and get something like
the dotted curve in Figure 7.3.1. In order to define the remaining values, we are
“connecting the dots” in a way that makes the function continuous.

It follows from continuity and the properties of limits that exponential func‐
tions will satisfy the familiar properties of exponents (see Section 2.0). This im‐
plies that

−1 1

0.5
1

2

x

y

Figure 7.3.2: The functions 2x and 2−x.

(
1
2

)x

= (2−1)x = 2−x,

so the graph of g(x) = (1/2)x is the reflection of f across the y‐axis, as in Fig‐
ure 7.3.2.

We can go through the same process as above for any base a > 0, though
we are not usually interested in the constant function 1x.

Key Idea 7.3.1 Properties of Exponential Functions
For a > 0 and a ̸= 1 the exponential function f(x) = ax satisfies:

1. a0 = 1

2. lim
x→∞

ax =

{
∞ a > 1
0 a < 1

3. ax > 0 for all x

4. lim
x→−∞

ax =

{
0 a > 1
∞ a < 1

Notes:
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Derivatives of exponential functions

Suppose f(x) = ax for some a > 0. We can use the rules of exponents to find
the derivative of f:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

ax(ah − 1)
h

= ax lim
h→0

ah − 1
h

(since ax does not depend on h)

So we know that f ′(x) = ax lim
h→0

ah − 1
h

, but can we say anything about that
remaining limit? First we note that

f ′(0) = lim
h→0

a0+h − a0

h
= lim

h→0

ah − 1
h

,

so we have f ′(x) = axf ′(0). The actual value of the limit lim
h→0

ah − 1
h

depends
on the base a, but it can be proved that it does exist. Wewill figure out just what
this limit is later, but for now we note that the easiest differentiation formulas

come from using a base a that makes lim
h→0

ah − 1
h

= 1. This base is the number
e ≈ 2.71828 and the exponential function ex is called the natural exponential
function. This leads to the following result.

Theorem 7.3.1 Derivative of Exponential Functions
For any base a > 0, the exponential function f(x) = ax has derivative
f ′(x) = axf ′(0). The natural exponential function g(x) = ex has deriva‐
tive g ′(x) = ex.

Notes:
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7.3 Exponential and Logarithmic Functions

Watch the video:
Derivatives of Exponential Functions at
https://youtu.be/U3PyUcEd7IU

General logarithmic functions

Before reviewing general logarithmic functions, we’ll first remind ourselves of
the laws of logarithms.

Key Idea 7.3.2 Properties of Logarithms
For a, x, y > 0 and a ̸= 1, we have
1. loga(xy) = loga x+ loga y 2. loga

x
y
= loga x− loga y

3. logx y =
loga y
loga x

, when x ̸= 1 4. loga xy = y loga x

5. loga 1 = 0 6. loga a = 1

1 e

1

e

x

y

Figure 7.3.3: The functions y = ax and
y = loga x for a > 1.

Let us consider the function f(x) = ax where a ̸= 1. We know that f ′(x) =
f ′(0)ax, where f ′(0) is a constant that depends on the base a. Since ax > 0 for all
x, this implies that f ′(x) is either always positive or always negative, depending
on the sign of f ′(0). This in turn implies that f is strictly monotonic, so f is one‐
to‐one. We can now say that f has an inverse. We call this inverse the logarithm
with base a, denoted f−1(x) = loga x. When a = e, this is the natural logarithm
function ln x. So we can say that y = loga x if and only if ay = x. Since the range
of the exponential function is the set of positive real numbers, the domain of
the logarithm function is also the set of positive real numbers. Reflecting the
graph of y = ax across the line y = x we find that (for a > 1) the graph of the
logarithm looks like Figure 7.3.3.

Notes:
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

Key Idea 7.3.3 Properties of Logarithmic Functions
For a > 0 and a ̸= 1 the logarithmic function f(x) = loga x satisfies:

1. The domain of f(x) = logax is (0,∞) and the range is (−∞,∞).

2. y = loga x if and only if ay = x.

3. lim
x→∞

loga x =

{
∞ if a > 1
−∞ if a < 1

4. lim
x→0+

loga x =

{
−∞ if a > 1
∞ if a < 1

Using the inverse of the natural exponential function, we can determine
what the value of f ′(0) is in the formula (ax)′ = f ′(0)ax. To do so, we note
that a = eln a since the exponential and logarithm functions are inverses. Hence
we can write:

ax =
(
eln a
)x

= ex ln a

Now since ln a is a constant, we can use the Chain Rule to see that:

d
dx

ax =
d
dx

ex ln a = ex ln a(ln a) = ax ln a

Comparing this to our previous result, we can restate our theorem:

Theorem 7.3.2 Derivative of Exponential Functions
For any base a > 0, the exponential function f(x) = ax has derivative
f ′(x) = ax ln a. The natural exponential function g(x) = ex has deriva‐
tive g ′(x) = ex.

Change of base

In the previous computation, we found it convenient to rewrite the general expo‐
nential function in terms of the natural exponential function. A related formula
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allows us to rewrite the general logarithmic function in terms of the natural log‐
arithm. To see how this works, suppose that y = loga x, then we have:

ay = x
ln(ay) = ln x
y ln a = ln x

y =
ln x
ln a

loga x =
ln x
ln a

.

This change of base formula allows us to use facts about the natural logarithm
to derive facts about the general logarithm.

Derivatives of logarithmic functions
Since the natural logarithm function is the inverse of the natural exponential
function, we can use the formula (f−1(x))′ =

1
f ′(f−1(x))

to find the derivative

of y = ln x. We know that
d
dx

ex = ex, so we get:

d
dx

ln x =
1
ey

=
1

eln x
=

1
x
.

Nowwe can apply the change of base formula to find the derivative of a general
logarithmic function:

d
dx

loga x =
d
dx

(
ln x
ln a

)
=

1
ln a

(
d
dx

ln x
)

=
1

x ln a
.

Example 7.3.1 Finding Derivatives of Logs and Exponentials
Find derivatives of the following functions.

1. f(x) = x34x−7 2. g(x) = 2x
2

3. h(x) =
x

log5 x

SOLUTION

1. We apply both the Product and Chain Rules:

f ′(x) = 34x−7 + x
(
34x−7 ln 3

)
(4) = (1+ 4x ln 3)34x−7

2. We apply the Chain Rule:

g ′(x) = 2x
2
(ln 2)(2x) = 2x

2+1x ln 2.

Notes:
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3. Applying the Quotient Rule:

h ′(x) =
log5 x− x

( 1
x ln 5
)

(log5 x)2
=

(log5 x)(ln 5)− 1
(log5 x)2 ln 5

Example 7.3.2 The Derivative of the Natural Log
Find the derivative of the function y = ln |x|.

SOLUTION We can rewrite our function as

y =

{
ln x if x > 0
ln(−x) if x < 0

Applying the Chain Rule, we see that dy
dx = 1

x for x > 0, and dy
dx = −1

−x = 1
x for

x < 0. Hence we have

d
dx

ln |x| = 1
x

for x ̸= 0.

Antiderivatives

Combining these new results, we arrive at the following theorem:

Theorem 7.3.3 Derivatives and Antiderivatives of Exponentials
and Logarithms

Given a base a > 0 and a ̸= 1, the following hold:

1.
d
dx

ex = ex

2.
d
dx

ax = ax ln a

3.
d
dx

ln x =
1
x

4.
d
dx

loga x =
1

x ln a

5.
∫

ex dx = ex + C

6.
∫

ax dx =
ax

ln a
+ C

7.
∫

dx
x

= ln |x|+ C

Notes:
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Example 7.3.3 Finding Antiderivatives
Find the following antiderivatives.

1.
∫

3x dx 2.
∫

x2ex
3
dx 3.

∫
x dx

x2 + 1

SOLUTION

1. Applying our theorem, ∫
3x dx =

3x

ln 3
+ C

2. We use the substitution u = x3, du = 3x2 dx:∫
x2ex

3
dx =

1
3

∫
eu du

=
1
3
eu + C

=
1
3
ex

3
+ C

3. Using the substitution u = x2 + 1, du = 2x dx:∫
x dx

x2 + 1
=

1
2

∫
du
u

=
1
2
ln |u|+ C

=
1
2
ln
∣∣x2 + 1

∣∣+ C

=
1
2
ln(x2 + 1) + C

Note that we do not yet have an antiderivative for the function f(x) = ln x.
We remedy this in Section 8.1 with Example 8.1.5.

Logarithmic Differentiation

1 2

1

2

3

4

x

y

Figure 7.3.4: A plot of y = xx.

Consider the function y = xx; it is graphed in Figure 7.3.4. It is well‐defined
for x > 0 and we might be interested in finding equations of lines tangent and
normal to its graph. How do we take its derivative?
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

The function is not a power function: it has a “power” of x, not a constant.
It is not an exponential function: it has a “base” of x, not a constant.

A differentiation technique known as logarithmic differentiation becomes
useful here. The basic principle is this: take the natural log of both sides of an
equation y = f(x), then use implicit differentiation to find y ′. We demonstrate
this in the following example.

Example 7.3.4 Using Logarithmic Differentiation
Given y = xx, use logarithmic differentiation to find y ′.

SOLUTION As suggested above, we start by taking the natural log of
both sides then applying implicit differentiation.

y = xx

ln(y) = ln(xx) (apply logarithm rule)
ln(y) = x ln x (now use implicit differentiation)

d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y ′

y
= ln x+ x · 1

x
y ′

y
= ln x+ 1

y ′ = y
(
ln x+ 1

)
(substitute y = xx)

y ′ = xx
(
ln x+ 1

)
.

1 2

1

2

3

4

x

y

Figure 7.3.5: A graph of y = xx and its
tangent line at x = 1.5.

To “test” our answer, let’s use it to find the equationof the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equation for y ′, we find the slope as

y ′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equation of the tangent line is y = 2.582(x−1.5)+1.837. Figure 7.3.5
graphs y = xx along with this tangent line.
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Exercises 7.3
Problems
In Exercises 1–4, find the domain of the function.

1. f(x) = ex
2+1

2. f(t) = ln(1− t2)

3. g(x) = ln(x2)

4. f(x) = 2
log3(x2 + 1)

In Exercises 5–12, find the derivative of the function.

5. f(t) = et
3−1

6. g(r) = r2 log2 r

7. f(x) = log5 x
5x

8. f(x) = 4x
5

9. f(x) = 7log7 x

10. g(x) = ex
2
sin(x− ln x)

11. h(r) = tan−1(3r)

12. h(x) = log10
(
x2 + 1
x4

)
In Exercises 13–24, evaluate the integral.

13.
∫ 2

0
5x dx

14.
∫ 3

1

log3 x
x

dx

15.
∫

x3x
2−1 dx

16.
∫

cos(ln x)
x

dx

17.
∫

ex sin(ex) cos(ex) dx

18.
∫ 8

1
log2 x dx

19.
∫ 5

0

3x

3x + 2
dx

20.
∫

1
(1+ x2) tan−1 x

dx

21.
∫

ln x
x

dx

22.
∫ (

ln x
)2

x
dx

23.
∫ ln

(
x3
)

x
dx

24.
∫

1
x ln (x2)

dx

25. Find the two values of n so that the function y = enx satis‐
fies the differential equation y ′′ + y ′ − 6y = 0.

26. Let f(x) = x2 and g(x) = 2x.
(a) Since f(2) = 22 = 4 and g(2) = 22 = 4,

f(2) = g(2). Find a positive number c > 2 so that
f(c) = g(c).

(b) Explain how you can be sure that there is at least one
negative number a so that f(a) = g(a).

(c) Use the Bisection Method to estimate the number a
accurate to within .05.

(d) Assume youwere to graph f(x) and g(x) on the same
graph with unit length equal to 1 inch along both co‐
ordinate axes. Approximately how high is the graph
of f when x = 18? The graph of g?

In Exercises 27–34, use logarithmic differentiation to find dy
dx

,
then find the equation of the tangent line at the indicated x‐
value.

27. y = (1+ x)1/x, x = 1

28. y = (2x)x
2
, x = 1

29. y = xx

x+ 1
, x = 1

30. y = xsin(x)+2, x = π/2

31. y = x+ 1
x+ 2

, x = 1

32. y = (x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0

33. y = xe
x
, x = 1

34. y = (cot x)cos x, x = π

35. The amount y of C14 in an object decays according the
the function y(t) = y0e−rt, where y0 denotes the initial
amount. If it takes 5730 years for half the initial amount to
decay, find the rate constant r, and then determines how
long it takes until only 10% remains.
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

7.4 Hyperbolic Functions

The hyperbolic functions are functions that have many applications to math‐
ematics, physics, and engineering. Among many other applications, they are
used to describe the formation of satellite rings around planets, to describe the
shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

(cos θ,sin θ)

A =
θ

2x2 + y2 = 1

−1 1

−1

1

x

y

(cosh θ,sinh θ)

A =
θ

2

x2 − y2 = 1

−2 2

−2

2

x

y

Figure 7.4.1: Using trigonometric func‐
tions to define points on a circle and
hyperbolic functions to define points on
a hyperbola.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many connections between them and the standard trig‐
onometric functions. Figure 7.4.1 demonstrates one such connection. Just as
cosine and sine are used to define points on the circle defined by x2 + y2 = 1,
the functions hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their definitions.

Definition 7.4.1 Hyperbolic Functions

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

The hyperbolic functions are graphed in Figure 7.4.2. In the graphs of cosh x
and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As x gets
“large,” cosh x and sinh x each act like ex/2; when x is a large negative number,
cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

Pronunciation Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch,”

Notice the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have vertical asymptotes at x = 0. Also note the ranges of these
functions, especially tanh x: as x → ∞, both sinh x and cosh x approach ex/2,
hence tanh x approaches 1.

Notes:
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7.4 Hyperbolic Functions

f(x) = cosh x

−2 2

−10

−5

5

10

x

y

f(x) = sinh x

−2 2

−10

−5

5

10

x

y

f(x) = tanh x

f(x) = coth x

−2 2

−2

2

x

y

f(x) = sech x
f(x) = csch x

−2 2

−3

−2

−1

1

2

3

x

y

Figure 7.4.2: Graphs of the hyperbolic functions.

Watch the video:
Hyperbolic Functions — The Basics at
https://youtu.be/G1C1Z5aTZSQ

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun‐
terparts.

Example 7.4.1 Exploring properties of hyperbolic functions
Use Definition 7.4.1 to rewrite the following expressions.

Notes:
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1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx
(
cosh x

)
5. d

dx
(
sinh x

)
6. d

dx
(
tanh x

)
SOLUTION

1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.

2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use identity from #1.

=
cosh2 x
cosh2 x

= 1.

So tanh2 x+ sech2 x = 1.

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x.

So d
dx
(
cosh x

)
= sinh x.
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7.4 Hyperbolic Functions

5.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x.

So d
dx
(
sinh x

)
= cosh x.

6.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x.

So d
dx
(
tanh x

)
= sech2 x.

The following Key Idea summarizes many of the important identities relat‐
ing to hyperbolic functions. Each can be verified by referring back to Defini‐
tion 7.4.1.

Key Idea 7.4.1 Useful Hyperbolic Function Properties
Basic Identities

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

Derivatives

1. d
dx
(
cosh x

)
= sinh x

2. d
dx
(
sinh x

)
= cosh x

3. d
dx
(
tanh x

)
= sech2 x

4. d
dx
(
sech x

)
= − sech x tanh x

5. d
dx
(
csch x

)
= − csch x coth x

6. d
dx
(
coth x

)
= − csch2 x

Integrals

1.
∫

cosh x dx = sinh x+ C

2.
∫

sinh x dx = cosh x+ C

3.
∫

tanh x dx = ln(cosh x) + C

4.
∫

coth x dx = ln |sinh x|+ C

We practice using Key Idea 7.4.1.

Notes:
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Example 7.4.2 Derivatives and integrals of hyperbolic functions
Evaluate the following derivatives and integrals.

1.
d
dx
(
cosh 2x

)
2.
∫

sech2(7t− 3) dt

3.
∫ ln 2

0
cosh x dx

SOLUTION

1. Using the Chain Rule directly, we have d
dx
(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic Identity found in
Key Idea 7.4.1: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.

Using another Basic Identity, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ substitution, with u = 7t − 3 and du = 7 dt. Applying Key
Idea 7.4.1 we have:∫

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ∫ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponentials:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.

Inverse Hyperbolic Functions

Just as the inverse trigonometric functions are useful in certain integrations, the
inverse hyperbolic functions are useful with others. Figure 7.4.3 shows the re‐
strictions on the domains to make each function one‐to‐one and the resulting
domains and ranges of their inverse functions. Their graphs are shown in Fig‐
ure 7.4.4.
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Because the hyperbolic functions are defined in terms of exponential func‐
tions, their inverses can be expressed in terms of logarithms as shown in Key
Idea 7.4.2. It is often more convenient to use sinh−1 x than ln

(
x +

√
x2 + 1

)
,

especially when one is working on theory and does not need to compute actual
values. On the other hand, when computations are needed, technology is often
helpful but many hand‐held calculators lack a convenient sinh−1 x button. (Of‐
ten it can be accessed under a menu system, but not conveniently.) In such a
situation, the logarithmic representation is useful. The reader is not encouraged
tomemorize these, but rather know they exist and know how to use themwhen
needed.

Function Domain Range Function Domain Range

cosh x [0,∞) [1,∞) cosh−1 x [1,∞) [0,∞)
sinh x (−∞,∞) (−∞,∞) sinh−1 x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1) tanh−1 x (−1, 1) (−∞,∞)
sech x [0,∞) (0, 1] sech−1 x (0, 1] [0,∞)
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞) csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞) coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 7.4.3: Domains and ranges of the hyperbolic and inverse hyperbolic functions.

y = cosh−1 x

y = cosh x

5 10

5

10

x

y
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y = tanh−1 x

−2 2
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y = sech−1 xy = csch−1 x
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Figure 7.4.4: Graphs of the hyperbolic functions and their inverses.
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Now let’s consider the inverses of the hyperbolic functions. We begin with
the function f(x) = sinh x. Since f ′(x) = cosh x > 0 for all real x, f is increasing
and must be one‐to‐one.

y =
ex − e−x

2
2y = ex − e−x (now multiply by ex)

2yex = e2x − 1 (a quadratic form )

(ex)2 − 2yex − 1 = 0 (use the quadratic formula)

ex =
2y±

√
4y2 + 4
2

ex = y±
√

y2 + 1 (use the fact that ex > 0)

ex = y+
√

y2 + 1

x = ln(y+
√

y2 + 1)

Finally, interchange the variable to find that

sinh−1 x = ln(x+
√

x2 + 1).

In a similar manner we find that the inverses of the other hyperbolic functions
are given by:

Key Idea 7.4.2 Logarithmic definitions of Inverse Hyperbolic Functions

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
;

x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
;

|x| < 1

3. sech−1 x = ln

(
1+

√
1− x2

x

)
;

0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
;

|x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
;

x ̸= 0

The following Key Ideas give the derivatives and integrals relating to the in‐
verse hyperbolic functions. In Key Idea 7.4.4, both the inverse hyperbolic and
logarithmic function representations of the antiderivative are given, based on
Key Idea 7.4.2. Again, these latter functions are often more useful than the for‐
mer.
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Key Idea 7.4.3 Derivatives Involving Inverse Hyperbolic Functions

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

;
x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

;
|x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

;
0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

;

x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

;
|x| > 1

Key Idea 7.4.4 Integrals Involving Inverse Hyperbolic Functions

1.
∫

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

(
x+

√
x2 − a2

)
+ C

2.
∫

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

(
x+

√
x2 + a2

)
+ C

3.
∫

1
a2 − x2

dx =

{
1
a tanh

−1 ( x
a

)
+ C |x| < |a|

1
a coth

−1 ( x
a

)
+ C |a| < |x|

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
∫

1
x
√
a2 − x2

dx = −1
a
sech−1 |x|

a
+ C; 0 < |x| < a =

1
a
ln
∣∣∣∣ x
a+

√
a2 − x2

∣∣∣∣+ C

5.
∫

1
x
√
x2 + a2

dx = −1
a
csch−1 |x|

a
+ C; x ̸= 0, a > 0 =

1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C

We practice using the derivative and integral formulas in the following exam‐
ple.

Example 7.4.3 Derivatives and integrals involving inverse hyperbolic
functions

Evaluate the following.

1.
d
dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1
x2 − 1

dx

3.
∫

1√
9x2 + 10

dx

Notes:
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SOLUTION

1. Applying Key Idea 7.4.3 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√( 3x−2
5
)2 − 1

· 3
5
.

2. Multiplying the numerator and denominator by (−1) gives a second inte‐
gral can be solved with a direct application of item #3 from Key Idea 7.4.4,
with a = 1. Thus∫

1
x2 − 1

dx = −
∫

1
1− x2

dx

=

{
− tanh−1 (x) + C x2 < 1
− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣+ C

=
1
2
ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣+ C. (7.4.1)

3. This requires a substitution, then item #2 of Key Idea 7.4.4 can be applied.
Let u = 3x, hence du = 3 dx. We have∫

1√
9x2 + 10

dx =
1
3

∫
1√

u2 + 10
du.

Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1
3
sinh−1

(
3x√
10

)
+ C

=
1
3
ln
∣∣∣3x+√9x2 + 10

∣∣∣+ C.

This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be memo‐
rized, but rather as a reference for future problem solving. Key Idea 7.4.4 con‐
tains perhaps the most useful information. Know the integration forms it helps

Notes:
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7.4 Hyperbolic Functions

evaluate and understand how to use the inverse hyperbolic answer and the log‐
arithmic answer.

The next section takes a brief break from demonstrating new integration
techniques. It instead demonstrates a technique of evaluating limits that return
indeterminate forms. This technique will be useful in Section 8.6, where limits
will arise in the evaluation of certain definite integrals.

Notes:
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Exercises 7.4
Terms and Concepts

1. In Key Idea 7.4.1, the equation
∫

tanh x dx = ln(cosh x) +

C is given. Why is “ln |cosh x|” not used — i.e., why are ab‐
solute values not necessary?

2. The hyperbolic functions are used to define points on the
right hand portion of the hyperbola x2 − y2 = 1, as shown
in Figure 7.4.1. How can we use the hyperbolic functions
to define points on the left hand portion of the hyperbola?

Problems
3. Suppose sinh t = 5/12. Find the values of the other five

hyperbolic functions at t.
4. Suppose tanh t = −3/5. Find the values of the other five

hyperbolic functions at t.
In Exercises 5–12, verify the given identity using Defini‐
tion 7.4.1, as done in Example 7.4.1.

5. coth2 x− csch2 x = 1
6. cosh 2x = cosh2 x+ sinh2 x

7. cosh2 x = cosh 2x+ 1
2

8. sinh2 x = cosh 2x− 1
2

9. d
dx

[sech x] = − sech x tanh x

10. d
dx

[coth x] = − csch2 x

11.
∫

tanh x dx = ln(cosh x) + C

12.
∫

coth x dx = ln |sinh x|+ C

In Exercises 13–24, find the derivative of the given function.

13. f(x) = sinh 2x
14. f(x) = cosh2 x
15. f(x) = tanh(x2)
16. f(x) = ln(sinh x)
17. f(x) = sinh x cosh x
18. f(x) = x sinh x− cosh x
19. f(x) = sech−1(x2)

20. f(x) = sinh−1(3x)
21. f(x) = cosh−1(2x2)

22. f(x) = tanh−1(x+ 5)

23. f(x) = tanh−1(cos x)

24. f(x) = cosh−1(sec x)

In Exercises 25–30, find the equation of the line tangent to the
function at the given x‐value.

25. f(x) = sinh x at x = 0

26. f(x) = cosh x at x = ln 2

27. f(x) = tanh x at x = − ln 3

28. f(x) = sech2 x at x = ln 3

29. f(x) = sinh−1 x at x = 0

30. f(x) = cosh−1 x at x =
√
2

In Exercises 31–38, evaluate the given indefinite integral.

31.
∫

tanh(2x) dx

32.
∫

cosh(3x− 7) dx

33.
∫

sinh x cosh x dx

34.
∫

1
9− x2

dx

35.
∫

2x√
x4 − 4

dx

36.
∫ √

x√
1+ x3

dx

37.
∫

ex

e2x + 1
dx

38.
∫

sech x dx (Hint: multiply by cosh x
cosh x ; set u = sinh x.)

In Exercises 39–40, evaluate the given definite integral.

39.
∫ 1

−1
sinh x dx

40.
∫ ln 2

− ln 2
cosh x dx

41. In the bottom graph of Figure 7.4.1 (the hyperbola), it is
stated that the shaded area is θ/2. Verify this claim by set‐
ting up and evaluating an appropriate integral (and note
that θ is just a positive number, not an angle).
Hint: Integrate with respect to y, and consult the table of
Integration Rules in the Appendix if necessary.
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7.5 L’Hôpital’s Rule

7.5 L’Hôpital’s Rule

This section is concerned with a technique for evaluating certain limits that will
be useful in later chapters.

Our treatment of limits exposed us to “0/0”, an indeterminate form. If both
lim
x→c

f(x) and lim
x→c

g(x) are zero, we do not conclude that lim
x→c

f(x)/g(x) is 0/0;
rather, we use 0/0 as notation to describe the fact that both the numerator
and denominator approach 0. The expression 0/0 has no numeric value; other
work must be done to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be.

This section introduces L’Hôpital’s Rule, a method of resolving limits that
produce the indeterminate forms 0/0 and∞/∞. We’ll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 7.5.1 L’Hôpital’s Rule, Part 1
Let f and g be differentiable functions on an open interval I containing a.

1. If lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, and g ′(x) ̸= 0 except possibly at
x = a, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

,

assuming that the limit on the right exists.

2. If lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

,

assuming that the limit on the right exists.
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Chapter 7 Inverse Functions and L’Hôpital’s Rule

A similar statement holds if we just look at the one sided limits lim
x→a−

and
lim

x→a+
.

Theorem 7.5.2 L’Hôpital’s Rule, Part 2
Let f and g be differentiable functions on the open interval (c,∞) for
some value c and g ′(x) ̸= 0 on (c,∞).

1. If lim
x→∞

f(x) = 0 and lim
x→∞

g(x) = 0, then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

,

assuming that the limit on the right exists.

2. If lim
x→∞

f(x) = ±∞ and lim
x→∞

g(x) = ±∞, then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

,

assuming that the limit on the right exists.

Similar statements can be made where x approaches−∞.

We demonstrate the use of L’Hôpital’s Rule in the following examples; we
will often use “LHR” as an abbreviation of “L’Hôpital’s Rule.”

Example 7.5.1 Using L’Hôpital’s Rule
Evaluate the following limits, using L’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→−3

x3 + 27
x2 + 9

5. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

6. lim
x→∞

ex

x3

SOLUTION

1. This has the indeterminate form 0/0. We proved this limit is 1 in Exam‐
ple 1.3.4 using the Squeeze Theorem. Hereweuse L’Hôpital’s Rule to show

Notes:
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its power.
lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

While this seems easier than using the Squeeze Theorem to find this limit,
we note that applying L’Hôpital’s Rule here requires us to know the der‐
ivative of sin x. We originally encountered this limit when we were trying
to find that derivative.

2. This has the indeterminate form 0/0.

lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. This has the indeterminate form 0/0.

lim
x→0

x2

1− cos x
by LHR
= lim

x→0

2x
sin x

.

This latter limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply L’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
= lim

x→0

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. lim
x→−3

x3 + 27
x2 + 9

=
0
18

= 0

We cannot use L’Hôpital’s Rule in this case because the original limit does
not return an indeterminate form, so L’Hôpital’s Rule does not apply. In
fact, the inappropriate use of L’Hôpital’s Rule here would result in the in‐
correct limit− 9

2 .

5. We can evaluate this limit already using Key Idea 1.5.2; the answer is 3/4.
We apply L’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

6. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x
by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This
has important implications in computing when considering efficiency of
algorithms.)
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Indeterminate Forms 0 · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to ratios of functions. When faced with an
indeterminate form such as 0 · ∞ or∞−∞, we can sometimes apply algebra
to rewrite the limit so that L’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

Watch the video:
L’Hôpital’s Rule — Indeterminate Powers at
https://youtu.be/kEnwac_9lyg

Example 7.5.2 Applying L’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

(ln(x+ 1)− ln x)

4. lim
x→∞

(
x2 − ex

)
SOLUTION

1. As x → 0+, note that x → 0 and e1/x → ∞. Thus we have the indeter‐

minate form 0 · ∞. We rewrite the expression x · e1/x as e1/x

1/x
; now, as

x → 0+, we get the indeterminate form ∞/∞ to which L’Hôpital’s Rule
can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x
by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

Interpretation: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, note that x → 0 and e1/x → e−∞ → 0. The the limit
evaluates to 0 · 0 which is not an indeterminate form. We conclude then
that

lim
x→0−

x · e1/x = 0.

Notes:
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7.5 L’Hôpital’s Rule

3. This limit initially evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

(ln(x+ 1)− ln x) = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the natural logarithm approaches ∞/∞, to
which we can apply L’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
= lim

x→∞

1
1
= 1.

Since x → ∞ implies
x+ 1
x

→ 1, it follows that

x → ∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus
lim
x→∞

(ln(x+ 1)− ln x) = lim
x→∞

ln
(
x+ 1
x

)
= 0.

Interpretation: since this limit evaluates to 0, it means that for large x,
there is essentially no difference between ln(x + 1) and ln x; their differ‐
ence is essentially 0.

4. The limit lim
x→∞

(
x2 − ex

)
initially returns the indeterminate form∞−∞.

We can rewrite the expression by factoring out x2; x2−ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x → ∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x
by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde‐
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

(
x2 − ex

)
= −∞.

Interpretation: as x gets large, the difference between x2 and ex grows
very large.
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Indeterminate Forms 00, 1∞, and∞0

When faced with a limit that returns one of the indeterminate forms 00, 1∞, or
∞0, it is often useful to use the natural logarithm to convert to an indeterminate
form we already know how to find the limit of, then use the natural exponential
function find the original limit. This is possible because the natural logarithm
and natural exponential functions are inverses and because they are both con‐
tinuous. The following Key Idea expresses the concept, which is followed by an
example that demonstrates its use.

Key Idea 7.5.1 Evaluating Limits Involving Indeterminate Forms
00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.

Example 7.5.3 Using L’Hôpital’s Rule with indeterminate forms involving
exponents

Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

SOLUTION

1. This is equivalent to a special limit given in Theorem 1.3.6; these limits
have important applications in mathematics and finance. Note that the
exponent approaches ∞ while the base approaches 1, leading to the in‐
determinate form 1∞. Let f(x) = (1+1/x)x; the problem asks to evaluate
lim
x→∞

f(x). Let’s first evaluate lim
x→∞

ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x
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This produces the indeterminate form 0/0, so we apply L’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)

= 1. We return to the original limit and apply Key
Idea 7.5.1.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

This is another way to determine the value of the number e.

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider
first lim

x→0+
ln
(
f(x)
)
.

f(x) = xx

1 2

1

2

3

4

x

y

Figure 7.5.1: A graph of f(x) = xx

supporting the fact that as x → 0+,
f(x) → 1.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

This produces the indeterminate form 0(−∞), so we rewrite it in order to
apply L’Hôpital’s Rule.

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form −∞/∞ so we apply L’Hôpital’s
Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key

Idea 7.5.1.

lim
x→0+

xx = lim
x→0+

f(x) = lim
x→0+

eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 7.5.1.
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Exercises 7.5
Terms and Concepts
1. List the different indeterminate forms described in this sec‐

tion.
2. T/F: L’Hôpital’s Rule provides a fastermethod of computing

derivatives.

3. T/F: L’Hôpital’s Rule states that d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: The Quotient Rule is applied to f(x)
g(x)

when taking ; L’Hôpital’s Rule is appliedwhen tak‐
ing certain .

6. Create (but do not evaluate!) a limit that returns “∞0”.
7. Create a function f(x) such that lim

x→1
f(x) returns “00”.

8. Create a function f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems
In Exercises 9–54, evaluate the given limit.

9. lim
x→1

x2 + x− 2
x− 1

10. lim
x→2

x2 + x− 6
x2 − 7x+ 10

11. lim
x→π

sin x
x− π

12. lim
x→π/4

sin x− cos x
cos(2x)

13. lim
x→0

sin(5x)
x

14. lim
x→0

sin(2x)
x+ 2

15. lim
x→0

sin(ax)
sin(bx)

16. lim
x→0+

ex − 1
x2

17. lim
x→0+

ex − x− 1
x2

18. lim
x→0+

x− sin x
x3 − x2

19. lim
x→∞

x4

ex

20. lim
x→∞

√
x

ex

21. lim
x→∞

ex√
x

22. lim
x→∞

ex

2x

23. lim
x→∞

ex

3x

24. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

25. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

26. lim
x→∞

ln x
x

27. lim
x→∞

ln(x2)
x

28. lim
x→∞

(
ln x
)2

x
29. lim

x→0+
x ln x

30. lim
x→0+

√
x ln x

31. lim
x→0+

xe1/x

32. lim
x→∞

(
x3 − x2

)
33. lim

x→∞

(√
x− ln x

)
34. lim

x→−∞
xex

35. lim
x→0+

1
x2
e−1/x

36. lim
x→0+

(1+ x)1/x

37. lim
x→0+

(2x)x

38. lim
x→0+

(2/x)x

39. lim
x→0+

(sin x)x

40. lim
x→1−

(1− x)1−x

41. lim
x→∞

(x)1/x

42. lim
x→∞

(1/x)x

43. lim
x→1+

(ln x)1−x

44. lim
x→∞

(1+ x)1/x

45. lim
x→∞

(1+ x2)1/x

46. lim
x→π/2

tan x cos x

47. lim
x→π/2

tan x sin(2x)

48. lim
x→1+

(
1
ln x

− 1
x− 1

)
49. lim

x→3+

(
5

x2 − 9
− x

x− 3

)
50. lim

x→∞
x tan(1/x)

51. lim
x→∞

(ln x)3

x

52. lim
x→1

x2 + x− 2
ln x

53. lim
x→0+

(
2+ 5x

3

)1/x

54. lim
x→∞

(
1+ 71/x

2

)x

55. Following the guidelines in Section 3.5, and using L’Hôpi‐
tal’s rule where appropriate, neatly sketch the graph of
f(x) = ln(x)

ln(2x) . Check your answer using a graphing utility
(and be careful near 0).
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8: TECHNIQUES OF
INTEGRATION

Chapter 5 introduced the antiderivative and connected it to signed areas un‐
der a curve through the Fundamental Theorem of Calculus. The chapter after
explored more applications of definite integrals than just area. As evaluating
definite integrals will become even more important, we will want to find anti‐
derivatives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions, we
can still find antiderivatives of a wide variety of functions.

8.1 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:∫
x cos x dx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

The Product Rule says that if u and v are functions of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve written u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the left side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u ′v dx+
∫

uv ′ dx.

Notes:
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Chapter 8 Techniques of Integration

Solving for the second integral we have∫
uv ′ dx = uv−

∫
u ′v dx.

Using differential notation, we can write

u ′ =
du
dx

v ′ =
dv
dx

⇒
du = u ′ dx
dv = v ′ dx.

Thus, the equation above can be written as follows:∫
u dv = uv−

∫
v du.

This is the Integration by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 8.1.1 Integration by Parts
Let u and v be differentiable functions of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and applying FTC part 2 we have∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.

Watch the video:
Integration by Parts — Definite Integral at
https://youtu.be/zGGI4PkHzhI

Let’s try an example to understand our new technique.

Notes:
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8.1 Integration by Parts

Example 8.1.1 Integrating using Integration by Parts
Evaluate

∫
x cos x dx.

SOLUTION The key to Integration by Parts is to identify part of the in‐
tegrand as “u” and part as “dv.” Regular practice will help one make good iden‐
tifications, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values.

u = x dv = cos x dx
du = ? v = ?

⇒
u = x dv = cos x dx

du = dx v = sin x

Right now we only know u and dv as shown on the left; on the right we fill in
the rest of what we need. If u = x, then du = dx. Since dv = cos x dx, v is an
antiderivative of cos x, so v = sin x.

Now substitute all of this into the Integration by Parts formula, giving∫
x cos x dx = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

We have two important notes here: (1) notice how the antiderivative contains
the product, x sin x. This product is what makes integration by parts necessary.
And (2) antidifferentiating dv does result in v+ C. The intermediate+Cs are all
added together and represented by one+C in the final answer.

The example above demonstrates how Integration by Parts works in general.
We try to identify u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the Integration by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integrating x cos x dx, we could integrate sin x dx, which we knew how to do.

If we had chosen u = cos x and dv = x dx, so that du = − sin x dx and
v = 1

2x
2, then ∫

x cos x dx =
1
2
x2 cos x−

(
−1
2

)∫
x2 sin x dx.
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Chapter 8 Techniques of Integration

We then need to integrate x2 sin x, which is more complicated than our original
integral, making this an unproductive choice.

We now consider another example.

Example 8.1.2 Integrating using Integration by Parts
Evaluate

∫
xex dx.

SOLUTION Notice that x becomes simpler when differentiated and ex
is unchanged by differentiation or integration. This suggests that we should let
u = x and dv = ex dx:

u = x dv = ex dx
du = ? v = ?

⇒
u = x dv = ex dx

du = dx v = ex

The Integration by Parts formula gives∫
xex dx = xex −

∫
ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the antiderivatives contain a product term.

Example 8.1.3 Integrating using Integration by Parts
Evaluate

∫
x2 cos x dx.

SOLUTION Let u = x2 instead of the trigonometric function, hence
dv = cos x dx. Then du = 2x dx and v = sin x as shown below.

u = x2 dv = cos x dx
du = ? v = ?

⇒
u = x2 dv = cos x dx

du = 2x dx v = sin x

The Integration by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we start‐
ed with, but to evaluate it, we need to do Integration by Parts again. Here we

Notes:

386



8.1 Integration by Parts

choose u = 2x and dv = sin x dx and fill in the rest below.

u = 2x dv = sin x dx
du = ? v = ?

⇒
u = 2x dv = sin x dx

du = 2 dx v = − cos x

This means that∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval‐
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C.

Example 8.1.4 Integrating using Integration by Parts
Evaluate

∫
ex cos x dx.

SOLUTION This is a classic problem. In this particular example, one can
let u be either cos x or ex; we choose u = ex and hence dv = cos x dx. Then
du = ex dx and v = sin x as shown below.

u = ex dv = cos x dx
du = ? v = ?

⇒
u = ex dv = cos x dx

du = ex dx v = sin x

Notice that du is no simpler than u, going against our general rule (but bear
with us). The Integration by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

The integral on the right is notmuch different from the onewe startedwith, so it
seems likewe have gotten nowhere. Let’s keepworking and apply Integration by
Parts to the new integral. So what should we use for u and dv this time? Wemay
feel like letting the trigonometric function be dv and the exponential be uwas a
bad choice last time since we still can’t integrate the new integral. However, if
we let u = sin x and dv = ex dx this time we will reverse what we just did, taking
us back to the beginning. So, we let u = ex and dv = sin x dx. This leads us to
the following:

u = ex dv = sin x dx
du = ? v = ?

⇒
u = ex dv = sin x dx

du = ex dx v = − cos x

Notes:
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Chapter 8 Techniques of Integration

The Integration by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this is actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a little and adding the constant of integration, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C.

Example 8.1.5 Using Integration by Parts: antiderivative of ln x
Evaluate

∫
ln x dx.

SOLUTION Onemay have noticed that we have rules for integrating the
familiar trigonometric functions and ex, but we have not yet given a rule for
integrating ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its antiderivative by
a clever application of Integration by Parts. Set u = ln x and dv = dx. This
is a good strategy to learn as it can help in other situations. This determines
du = (1/x) dx and v = x as shown below.

u = ln x dv = dx
du = ? v = ?

⇒
u = ln x dv = dx

du = 1/x dx v = x

Putting this all together in the Integration by Parts formula, things work out very
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nicely: ∫
ln x dx = x ln x−

∫
x
1
x
dx

= x ln x−
∫

1 dx

= x ln x− x+ C.

Example 8.1.6 Using Integration by Parts: antiderivative of tan−1 x

Evaluate
∫

tan−1 x dx.

SOLUTION The same strategy of dv = dx that we used above works
here. Let u = tan−1 x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The
Integration by Parts formula gives∫

tan−1 x dx = x tan−1 x−
∫

x
1+ x2

dx.

The integral on the right can be solved by substitution. Taking t = 1 + x2, we
get dt = 2x dx. The integral then becomes∫

tan−1 x dx = x tan−1 x− 1
2

∫
1
t
dt.

The integral on the right evaluates to ln |t| + C, which becomes ln(1 + x2) + C.
Therefore, the answer is∫

tan−1 x dx = x tan−1 x− 1
2
ln(1+ x2) + C.

Since 1+ x2 > 0, we do not need to include the absolute value in the ln(1+ x2)
term.

Substitution Before Integration

When taking derivatives, it was common to employ multiple rules (such as using
both the Quotient and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integration techniques. In
particular, here we illustrate making an “unusual” substitution first before using
Integration by Parts.
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Example 8.1.7 Integration by Parts after substitution
Evaluate

∫
cos(ln x) dx.

SOLUTION The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = ln x, we have du =
1/x dx. This seems problematic, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse functions to solve for x = eu. Therefore we
have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 8.1.4. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and Integration By Parts
So far we have focused only on evaluating indefinite integrals. Of course, we can
use Integration by Parts to evaluate definite integrals as well, as Theorem 8.1.1
states. We do so in the next example.

Example 8.1.8 Definite integration using Integration by Parts

Evaluate
∫ 2

1
x2 ln x dx.

SOLUTION To simplify the integral we let u = ln x and dv = x2 dx. We
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then get du = (1/x) dx and v = x3/3 as shown below.

u = ln x dv = x2 dx
du = ? v = ?

⇒
u = ln x dv = x2 dx

du = 1/x dx v = x3/3

This may seem counterintuitive since the power on the algebraic factor has
increased (v = x3/3), but as we see this is a wise choice:∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
.

In general, Integration by Parts is useful for integrating certain products of
functions, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric functions.
As stated before, integration is generally more difficult than differentiation.

We are developing tools for handling a large array of integrals, and experience
will tell us when one tool is preferable/necessary over another. For instance,
consider the three similar‐looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.

While the first is calculated easilywith Integrationby Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer. We will learn how to approximate
this integral in Chapter 9

Integration by Parts is a very useful method, second only to substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. The next section focuses on handling integrals containing trigono‐
metric functions.
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Exercises 8.1
Terms and Concepts
1. T/F: Integration by Parts is useful in evaluating integrands

that contain products of functions.
2. T/F: Integration by Parts can be thought of as the “opposite

of the Chain Rule.”

Problems
In Exercises 3–36, evaluate the given indefinite integral.

3.
∫

x sin x dx

4.
∫

xe−x dx

5.
∫

x2 sin x dx

6.
∫

x3 sin x dx

7.
∫

xex
2
dx

8.
∫

x3ex dx

9.
∫

xe−2x dx

10.
∫

ex sin x dx

11.
∫

e2x cos x dx

12.
∫

e2x sin(3x) dx

13.
∫

e5x cos(5x) dx

14.
∫

sin x cos x dx

15.
∫

sin−1 x dx

16.
∫

tan−1(2x) dx

17.
∫

x tan−1 x dx

18.
∫

cos−1 x dx

19.
∫

x ln x dx

20.
∫

(x− 2) ln x dx

21.
∫

x ln(x− 1) dx

22.
∫

x ln(x2) dx

23.
∫

x2 ln x dx

24.
∫

(ln x)2 dx

25.
∫

(ln(x+ 1))2 dx

26.
∫

x sec2 x dx

27.
∫

x csc2 x dx

28.
∫

x
√
x− 2 dx

29.
∫

x
√
x2 − 2 dx

30.
∫

sec x tan x dx

31.
∫

x sec x tan x dx

32.
∫

x csc x cot x dx

33.
∫

x cosh x dx

34.
∫

x sinh x dx

35.
∫

sinh−1 x dx

36.
∫

tanh−1 x dx

In Exercises 37–42, evaluate the indefinite integral after first
making a substitution.

37.
∫

sin(ln x) dx

38.
∫

sin(
√
x) dx

39.
∫

ln(
√
x) dx

40.
∫

e
√

x dx

41.
∫

eln x dx

42.
∫

x3ex
2
dx

In Exercises 43–52, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 3–12.

43.
∫ π

0
x sin x dx

44.
∫ 1

−1
xe−x dx

45.
∫ π/4

−π/4
x2 sin x dx

46.
∫ π/2

−π/2
x3 sin x dx

47.
∫ √

ln 2

0
xex

2
dx
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48.
∫ 1

0
x3ex dx

49.
∫ 2

1
xe−2x dx

50.
∫ π

0
ex sin x dx

51.
∫ π/2

−π/2
e2x cos x dx

52.
∫ π/3

0
e2x sin(3x) dx

53. (a) For n ≥ 2 show that∫ π/2

0
sinn x dx = n− 1

n

∫ π/2

0
sinn−2 x dx.

Hint: Begin by writing sinn x as (sinn−1 x) sin x and us‐
ing Integration by Parts.

(b) For k ≥ 1 show that∫ π/2

0
sin2k x dx = 1 · 3 · 5 · · · (2k− 1)

2 · 4 · 6 · · · (2k)
π

2
and∫ π/2

0
sin2k+1 x dx = 2 · 4 · 6 · · · (2k)

1 · 3 · 5 · 7 · · · (2k+ 1)
.

54. Find the volume of the solid of revolution obtained by ro‐
tating the region bounded by y = 0, y = ln x, x = 1, and
x = e:
(a) About the x‐axis, using the disk method.
(b) About the y‐axis, using the shell method.

55. Let f(x) = x for −π ≤ x < π and extend this
function so that it is periodic with period 2π. This
function is known as a sawtooth wave and looks like

−5 5

−4

−2

2

4

x

y

For a positive integer n, define bn =
1
π

∫ π

−π

f(x) sin(nx) dx.

(a) Find bn.

(b) Graph
N∑

n=1

bn sin(nx) for various values of N. What

do you observe?

56. Let f(x) =


−x− π −π ≤ x < − π

2

x − π
2 ≤ x < π

2

π − x π
2 ≤ x < π

and extend this

function so that it is periodic with period 2π. This
function is known as a triangle wave and looks like

−5 5

−2

2

x

y

For a positive integer n, define bn =
1
π

∫ π

−π

f(x) sin(nx) dx.

(a) Find bn.

(b) Graph
N∑

n=1

bn sin(nx) for various values of N. What

do you observe?
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Chapter 8 Techniques of Integration

8.2 Trigonometric Integrals
Trigonometric functions are useful for describing periodic behavior. This section
describes several techniques for finding antiderivatives of certain combinations
of trigonometric functions.

Integrals of the form
∫

sinm x cosn x dx

In learning the technique of Substitution, we saw the integral
∫
sin x cos x dx in

Example 5.5.4. The integration was not difficult, and one could easily evaluate
the indefinite integral by letting u = sin x or by letting u = cos x. This integral is
easy since the power of both sine and cosine is 1.

Wegeneralize this and consider integrals of the form
∫
sinm x cosn x dx, where

m, n are nonnegative integers. Our strategy for evaluating these integrals is to
use the identity cos2 x+ sin2 x = 1 to convert high powers of one trigonometric
function into the other, leaving a single sine or cosine term in the integrand. We
summarize the general technique in the following Key Idea.

Watch the video:
Trigonometric Integrals — Part 2 of 6 at
https://youtu.be/zyg9k1je7Fg

(continued)

Key Idea 8.2.1 Integrals Involving Powers of Sine and Cosine
Consider

∫
sinm x cosn x dx, wherem, n are nonnegative integers.

1. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sin x = (sin2 x)k sin x = (1− cos2 x)k sin x.

Then∫
sinm x cosn x dx =

∫
(1− cos2 x)k sin x cosn x dx = −

∫
(1− u2)kun du,

where u = cos x and du = − sin x dx.

2. If n is odd, then using substitutions similar to that outlined above we have∫
sinm x cosn x dx =

∫
um(1− u2)k du,
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8.2 Trigonometric Integrals

Key Idea 8.2.1 continued
where u = sin x and du = cos x dx.

3. If bothm and n are even, use the half‐angle identities

cos2 x = 1+ cos(2x)
2

and sin2 x = 1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply the prin‐
ciples of this Key Idea again.

We practice applying Key Idea 8.2.1 in the next examples.

Example 8.2.1 Integrating powers of sine and cosine
Evaluate

∫
sin5 x cos8 x dx.

SOLUTION The power of the sine factor is odd, so we rewrite sin5 x as

sin5 x = sin4 x sin x = (sin2 x)2 sin x = (1− cos2 x)2 sin x.

Our integral is now
∫
(1− cos2 x)2 cos8 x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the substitution and expanding the integrand gives∫
(1− cos2 x)2 cos8 x sin x dx = −

∫
(1− u2)2u8 du

= −
∫ (

1− 2u2 + u4
)
u8 du

= −
∫ (

u8 − 2u10 + u12
)
du

= −1
9
u9 +

2
11

u11 − 1
13

u13 + C

= −1
9
cos9 x+

2
11

cos11 x− 1
13

cos13 x+ C.

Example 8.2.2 Integrating powers of sine and cosine
Evaluate

∫
sin5 x cos9 x dx.

SOLUTION Because the powers of both the sine and cosine factors are
odd, we can apply the techniques of Key Idea 8.2.1 to either power. We choose
to work with the power of the sine factor since that has a smaller exponent.
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Chapter 8 Techniques of Integration

We rewrite sin5 x as

sin5 x = sin4 x sin x
= (1− cos2 x)2 sin x
= (1− 2 cos2 x+ cos4 x) sin x.

This lets us rewrite the integral as∫
sin5 x cos9 x dx =

∫ (
1− 2 cos2 x+ cos4 x

)
sin x cos9 x dx.

Substituting and integrating with u = cos x and du = − sin x dx, we have∫ (
1− 2 cos2 x+ cos4 x

)
sin x cos9 x dx

= −
∫ (

1− 2u2 + u4
)
u9 du

= −
∫

u9 − 2u11 + u13 du

= − 1
10

u10 +
1
6
u12 − 1

14
u14 + C

= − 1
10

cos10 x+
1
6
cos12 x− 1

14
cos14 x+ C.

Instead, another approach would be to rewrite cos9 x as

cos9 x = cos8 x cos x
= (cos2 x)4 cos x
= (1− sin2 x)4 cos x
= (1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x) cos x.

We rewrite the integral as∫
sin5 x cos9 x dx =

∫ (
sin5 x

)(
1−4 sin2 x+6 sin4 x−4 sin6 x+ sin8 x

)
cos x dx.
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8.2 Trigonometric Integrals

Now substitute and integrate, using u = sin x and du = cos x dx.∫ (
sin5 x

)(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx

=

∫
u5(1− 4u2 + 6u4 − 4u6 + u8) du

=

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1
6
u6 − 1

2
u8 +

3
5
u10 − 1

3
u12 +

1
14

u14 + C

=
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x+ C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.
Nowadays problems of this sort are often solved using a computer algebra sys‐
tem. The powerful programMathematica® integrates

∫
sin5 x cos9 x dx as

f(x) =

− 45 cos(2x)
16384

− 5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

− cos(10x)
81920

− cos(12x)
24576

− cos(14x)
114688

,

which clearly has a different form than our second answer in Example 8.2.2,
which is

g(x)

f(x)

1 2 3

−0.002

0.002

0.004

x

y

Figure 8.2.1: A plot of f(x) and g(x) from
Example 8.2.2 and the Technology Note.

g(x) =
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x.

Figure 8.2.1 shows a graph of f and g; they are clearly not equal, but they differ
only by a constant: g(x) = f(x) + C for some constant C. We have two different
antiderivatives of the same function, meaning both answers are correct.

Example 8.2.3 Integrating powers of sine and cosine
Evaluate

∫
sin2 x dx.

SOLUTION The power of sine is even so we employ a half‐angle identity,
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algebra and a u‐ substitution as follows:∫
sin2 x dx =

∫
1− cos(2x)

2
dx

=
1
2

∫
1− cos(2x) dx

=
1
2

(
x− 1

2
sin(2x)

)
+ C

=
1
2
x− 1

4
sin(2x) + C.

Example 8.2.4 Integrating powers of sine and cosine
Evaluate

∫
cos4 x sin2 x dx.

SOLUTION The powers of sine and cosine are both even, so we employ
the half‐angle formulas and algebra as follows.∫

cos4 x sin2 x dx =
∫ (

1+ cos(2x)
2

)2(1− cos(2x)
2

)
dx

=

∫
1+ 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

The cos(2x) term is easy to integrate. The cos2(2x) term is another trigonome‐
tric integral with an even power, requiring the half‐angle formula again. The
cos3(2x) term is a cosine function with an odd power, requiring a substitution
as done before. We integrate each in turn below.

∫
cos(2x) dx =

1
2
sin(2x) + C.∫

cos2(2x) dx =
∫

1+ cos(4x)
2

dx =
1
2
(
x+

1
4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x) =
(
1− sin2(2x)

)
cos(2x).
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Letting u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx =

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1
2
(1− u2) du

=
1
2

(
u− 1

3
u3
)
+ C

=
1
2

(
sin(2x)− 1

3
sin3(2x)

)
+ C

Putting all the pieces together, we have∫
cos4 x sin2 x dx

=

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1
8

[
x+

1
2
sin(2x)− 1

2
(
x+

1
4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1
8

[1
2
x− 1

8
sin(4x) +

1
6
sin3(2x)

]
+ C.

The process above was a bit long and tedious, but being able to work a prob‐
lem such as this from start to finish is important.

Integrals of the form
∫

tanm x secn x dx

When evaluating integrals of the form
∫
sinm x cosn x dx, the Pythagorean Theo‐

rem allowed us to convert even powers of sine into even powers of cosine, and
vice versa. If, for instance, the power of sine was odd, we pulled out one sin x
and converted the remaining even power of sin x into a function using powers
of cos x, leading to an easy substitution.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = sec2 x,

• d
dx (sec x) = sec x tan x , and

• 1+ tan2 x = sec2 x (the Pythagorean Theorem).

Notes:
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If the integrand can be manipulated to separate a sec2 x term with the re‐
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead‐
ing to a simple substitution. This strategy is outlined in the following Key Idea.

Key Idea 8.2.2 Integrals Involving Powers of Tangent and Secant
Consider

∫
tanm x secn x dx, wherem and n are nonnegative integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn x as

secn x = sec2k x = sec2k−2 x sec2 x = (1+ tan2 x)k−1 sec2 x.

Then ∫
tanm x secn x dx =

∫
tanm x(1+ tan2 x)k−1 sec2 x dx =

∫
um(1+ u2)k−1 du,

where u = tan x and du = sec2 x dx.

2. Ifm is odd and n > 0, thenm = 2k+ 1 for some integer k. Rewrite tanm x secn x as

tanm x secn x = tan2k+1 x secn x = tan2k x secn−1 x sec x tan x = (sec2 x− 1)k secn−1 x sec x tan x.

Then ∫
tanm x secn x dx =

∫
(sec2 x− 1)k secn−1 x sec x tan x dx =

∫
(u2 − 1)kun−1 du,

where u = sec x and du = sec x tan x dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm x to (sec2 x− 1)k. Expand
the new integrand and use Integration By Parts, with dv = sec2 x dx.

4. Ifm is even and n = 0, rewrite tanm x as

tanm x = tanm−2 x tan2 x = tanm−2 x(sec2 x− 1) = tanm−2 sec2 x− tanm−2 x.

So ∫
tanm x dx =

∫
tanm−2 x sec2 x dx︸ ︷︷ ︸
apply rule #1

−
∫

tanm−2 x dx︸ ︷︷ ︸
apply rule #4 again

.

The techniques described in items 1 and 2 of Key Idea 8.2.2 are relatively

Notes:
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straightforward, but the techniques in items 3 and 4 can be rather tedious. A
few examples will help with these methods.

Example 8.2.5 Integrating powers of tangent and secant
Evaluate

∫
tan2 x sec6 x dx.

SOLUTION Since the power of secant is even, we use rule #1 from Key
Idea 8.2.2 and pull out a sec2 x in the integrand. We convert the remaining pow‐
ers of secant into powers of tangent.∫

tan2 x sec6 x dx =
∫

tan2 x sec4 x sec2 x dx

=

∫
tan2 x

(
1+ tan2 x

)2 sec2 x dx
Now substitute, with u = tan x, with du = sec2 x dx.

=

∫
u2
(
1+ u2

)2 du
We leave the integration and subsequent substitution to the reader. The final
answer is

=
1
3
tan3 x+

2
5
tan5 x+

1
7
tan7 x+ C.

We derived integrals for tangent and secant in Section 5.5 and will regularly
use them when evaluating integrals of the form tanm x secn x dx. As a reminder:∫

tan x dx = ln |sec x|+ C∫
sec x dx = ln |sec x+ tan x|+ C

Example 8.2.6 Integrating powers of tangent and secant
Evaluate

∫
sec3 x dx.

SOLUTION We apply rule #3 from Key Idea 8.2.2 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use Integra‐
tion by Parts; the rule suggests letting dv = sec2 x dx, meaning that u = sec x.

Notes:
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Chapter 8 Techniques of Integration

u = sec x dv = sec2 x dx
du = ? v = ?

⇒
u = sec x dv = sec2 x dx

du = sec x tan x dx v = tan x

Figure 8.2.2: Setting up Integration by Parts.
Employing Integration by Parts, we have∫

sec3 x dx =
∫

sec x︸︷︷︸
u

· sec2 x dx︸ ︷︷ ︸
dv

= sec x tan x−
∫

sec x tan2 x dx.

This new integral also requires applying rule #3 of Key Idea 8.2.2:

= sec x tan x−
∫

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
∫

sec3 x dx+
∫

sec x dx

= sec x tan x−
∫

sec3 x dx+ ln |sec x+ tan x|

Note: Remember that in Exam‐
ple 5.5.8, we found that

∫
sec x dx =

ln |sec x+ tan x|+ C

In previous applications of Integration by Parts, we have seenwhere the original
integral has reappeared in our work. We resolve this by adding

∫
sec3 x dx to

both sides, giving:

2
∫

sec3 x dx = sec x tan x+ ln |sec x+ tan x|∫
sec3 x dx =

1
2

(
sec x tan x+ ln |sec x+ tan x|

)
+ C.

We give one more example.

Example 8.2.7 Integrating powers of tangent and secant
Evaluate

∫
tan6 x dx.
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SOLUTION We employ rule #4 of Key Idea 8.2.2.∫
tan6 x dx =

∫
tan4 x tan2 x dx

=

∫
tan4 x

(
sec2 x− 1

)
dx

=

∫
tan4 x sec2 x dx−

∫
tan4 x dx

We integrate the first integral with substitution, u = tan x and du = sec2 x dx;
and the second by employing rule #4 again.

=

∫
u4 du−

∫
tan2 x tan2 x dx

=
1
5
tan5 x−

∫
tan2 x

(
sec2 x− 1

)
dx

=
1
5
tan5 x−

∫
tan2 x sec2 x dx+

∫
tan2 x dx

Again, use substitution for the first integral and rule #4 for the second.

=
1
5
tan5 x− 1

3
tan3 x+

∫ (
sec2 x− 1

)
dx

=
1
5
tan5 x− 1

3
tan3 x+ tan x− x+ C.

Integrals of the form
∫

cotm x cscn x dx

Not surprisingly, evaluating integrals of the form
∫
cotm x cscn x dx is similar to

evaluating
∫
tanm x secn x dx. The guidelines from Key Idea 8.2.2 and the follow‐

ing three facts will be useful:

d
dx

(cot x) = − csc2 x

d
dx

(csc x) = − csc x cot x, and

csc2 x = cot2 x+ 1

Notes:
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Chapter 8 Techniques of Integration

Example 8.2.8 Integrating powers of cotangent and cosecant
Evaluate

∫
cot2 x csc4 x dx

SOLUTION Since the power of cosecant is evenwewill let u = cot x and
save a csc2 x for the resulting du = − csc2 x dx.∫

cot2 x csc4 x dx =
∫

cot2 x csc2 x csc2 x dx

=

∫
cot2 x(1+ cot2 x) csc2 x dx

= −
∫

u2(1+ u2) du.

The integration and substitution required to finish this example are similar to
that of previous examples in this section. The result is

−1
3
cot3 x− 1

5
cot5 x+ C.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

Functions that contain products of sines and cosines of differing periods are im‐
portant in many applications including the analysis of sound waves. Integrals of
the form∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx

are best approached by first applying the Product to Sum Formulas of Trigonom‐
etry found in the back cover of this text, namely

sin(mx) sin(nx) =
1
2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1
2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1
2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
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Example 8.2.9 Integrating products of sin(mx) and cos(nx)

Evaluate
∫

sin(5x) cos(2x) dx.

SOLUTION The application of the formula and subsequent integration
are straightforward:∫

sin(5x) cos(2x) dx =
∫

1
2

[
sin(3x) + sin(7x)

]
dx

= −1
6
cos(3x)− 1

14
cos(7x) + C.

Integrating other combinations of trigonometric functions
Combinations of trigonometric functions thatwe have not discussed in this chap‐
ter are evaluated by applying algebra, trigonometric identities and other integra‐
tion strategies to create an equivalent integrand that we can evaluate. To eval‐
uate “crazy” combinations, those not readily manipulated into a familiar form,
one should use integral tables. A table of “common crazy” combinations can be
found at the end of this text.

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

The next section introduces an integration technique known as Trigonome‐
tric Substitution, a clever combination of Substitution and the Pythagorean The‐
orem.
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Exercises 8.2
Terms and Concepts

1. T/F:
∫

sin2 x cos2 x dx cannot be evaluated using the tech‐
niques described in this section since both powers of sin x
and cos x are even.

2. T/F:
∫

sin3 x cos3 x dx cannot be evaluated using the tech‐
niques described in this section since both powers of sin x
and cos x are odd.

3. T/F: This section addresses how to evaluate indefinite inte‐
grals such as

∫
sin5 x tan3 x dx.

4. T/F: Sometimes computer programs evaluate integrals in‐
volving trigonometric functions differently than one would
using the techniques of this section. When this is the case,
the techniques of this section have failed and one should
only trust the answer given by the computer.

Problems
In Exercises 5–32, evaluate the indefinite integral.

5.
∫

sin3 x cos x dx

6.
∫

cos2 x dx

7.
∫

cos4 x dx

8.
∫

sin3 x cos2 x dx

9.
∫

sin3 x cos3 x dx

10.
∫

sin6 x cos5 x dx

11.
∫

cos2 x tan3 x dx

12.
∫

sin2 x cos2 x dx

13.
∫

sin3 x
√
cos x dx

14.
∫

sin(x) cos(2x) dx

15.
∫

sin(3x) sin(7x) dx

16.
∫

sin(πx) sin(2πx) dx

17.
∫

cos(x) cos(2x) dx

18.
∫

cos
(π
2
x
)
cos(πx) dx

19.
∫

tan2 x dx

20.
∫

tan2 x sec4 x dx

21.
∫

tan3 x sec4 x dx

22.
∫

tan3 x sec2 x dx

23.
∫

tan3 x sec3 x dx

24.
∫

tan5 x sec5 x dx

25.
∫

tan4 x dx

26.
∫

sec5 x dx

27.
∫

tan2 x sec x dx

28.
∫

tan2 x sec3 x dx

29.
∫

csc x dx

30.
∫

cot3 x csc3 x dx

31.
∫

cot3 x dx

32.
∫

cot6 x csc4 x dx

In Exercises 33–40, evaluate the definite integral.

33.
∫ π

0
sin x cos4 x dx

34.
∫ π

−π

sin3 x cos x dx

35.
∫ π/2

−π/2
sin2 x cos7 x dx

36.
∫ π/2

0
sin(5x) cos(3x) dx

37.
∫ π/2

−π/2
cos(x) cos(2x) dx

38.
∫ π/4

0
tan4 x sec2 x dx

39.
∫ π/4

−π/4
tan2 x sec4 x dx

40.
∫ π

2

π
6

cot2 x dx

41. Find the area between the curves y = sin2 x and y = cos2 x
on the interval [π/4, 3π/4].
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8.3 Trigonometric Substitution

8.3 Trigonometric Substitution
In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of Cal‐
culus, so we evaluated special definite integrals which described nice, geometric
shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π
2

(8.3.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integration techniques, including Sub‐

stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte‐
gration skill. This techniqueworks on the sameprinciple as Substitution as found
in Section 5.5, though it can feel “backward.” In Section 5.5, we set u = f(x), for
some function f, and replaced f(x) with u. In this section, we will set x = f(θ),
where f is a trigonometric function, then replace x with f(θ).

Watch the video:
Trigonometric Substitution — Example 3 / Part 1
at
https://youtu.be/yW6Odu0YHL0

We start by demonstrating this method in evaluating the integral in Equa‐
tion (8.3.1). After the example, we will generalize the method and give more
examples.

Example 8.3.1 Using Trigonometric Substitution

Evaluate
∫ 3

−3

√
9− x2 dx.

SOLUTION We begin by noting that 9 sin2 θ + 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ = 9 cos2 θ.

Setting x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready to substitute.
We also change our bounds of integration. The bound x = −3 corresponds to

Notes:
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Chapter 8 Techniques of Integration

θ = −π/2 (for when θ = −π/2, x = 3 sin θ = −3). Likewise, the bound of
x = 3 is replaced by the bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

∫ π/2

−π/2
3
√
9 cos2 θ cos θ dθ

=

∫ π/2

−π/2
3 |3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always positive, so we can drop the absolute value bars,
then employ a half‐angle formula:

=

∫ π/2

−π/2
9 cos2 θ dθ

=

∫ π/2

−π/2

9
2
(
1+ cos(2θ)

)
dθ

=
9
2

(
θ +

1
2
sin(2θ)

)∣∣∣∣π/2
−π/2

=
9
2
π.

This matches our answer from before.

We now describe in detail Trigonometric Substitution. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples.

Key Idea 8.3.1 Trigonometric Substitution

(a) For integrands containing
√
a2 − x2:

Let x = a sin θ, for−π/2 ≤ θ ≤ π/2 and a > 0.
On this interval, cos θ ≥ 0, so

√
a2 − x2 = a cos θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, for−π/2 < θ < π/2 and a > 0.
On this interval, sec θ > 0, so

√
x2 + a2 = a sec θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, restricting our work to where x ≥ a > 0,
so x/a ≥ 1, and 0 ≤ θ < π/2.
On this interval, tan θ ≥ 0, so

√
x2 − a2 = a tan θ

Notes:
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Example 8.3.2 Using Trigonometric Substitution
Evaluate

∫
1√

5+ x2
dx.

SOLUTION Using Key Idea 8.3.1(b), we recognize a =
√
5 and set x =√

5 tan θ. This makes dx =
√
5 sec2 θ dθ. We will use the fact that

√
5+ x2 =√

5+ 5 tan2 θ =
√
5 sec2 θ =

√
5 sec θ. Substituting, we have:∫

1√
5+ x2

dx =
∫

1√
5+ 5 tan2 θ

√
5 sec2 θ dθ

=

∫ √
5 sec2 θ√
5 sec θ

dθ

=

∫
sec θ dθ

= ln |sec θ + tan θ|+ C.

While the integration steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

√
5

x√ x2 +
5

θ

Figure 8.3.1: A reference triangle for Ex‐
ample 8.3.2

The lengths of the sides of the reference triangle in Figure 8.3.1 are deter‐
mined by the Pythagorean Theorem. With x =

√
5 tan θ, we have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.

This gives ∫
1√

5+ x2
dx = ln |sec θ + tan θ|+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic identity to simplify it.
Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5+ x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣∣√x2 + 5+ x

∣∣∣+ C

= ln
∣∣∣√x2 + 5+ x

∣∣∣+ C,

where the ln
(
1/

√
5
)
term is absorbed into the constant C. (In Section 7.4 we

learned another way of approaching this problem.)
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Example 8.3.3 Using Trigonometric Substitution
Evaluate

∫ √
4x2 − 1 dx.

SOLUTION We start by rewriting the integrand so that it has the form√
x2 − a2 for some value of a:

√
4x2 − 1 =

√
4
(
x2 − 1

4

)

= 2

√
x2 −

(
1
2

)2

.

So we have a = 1/2, and following Key Idea 8.3.1(c), we set x = 1
2 sec θ, and

hence dx = 1
2 sec θ tan θ dθ. We now rewrite the integral with these substitu‐

tions: ∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1
2

)2

dx

=

∫
2
√

1
4
sec2 θ − 1

4

(
1
2
sec θ tan θ

)
dθ

=

∫ √
1
4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

∫ √
1
4
tan2 θ

(
sec θ tan θ

)
dθ

=

∫
1
2
tan2 θ sec θ dθ

=
1
2

∫ (
sec2 θ − 1

)
sec θ dθ

=
1
2

∫ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in Example 8.2.6, finding its antiderivatives to be∫
sec3 θ dθ =

1
2

(
sec θ tan θ + ln |sec θ + tan θ|

)
+ C.
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Thus∫ √
4x2 − 1 dx

=
1
2

∫ (
sec3 θ − sec θ

)
dθ

=
1
2

(
1
2

(
sec θ tan θ + ln |sec θ + tan θ|

)
− ln |sec θ + tan θ|

)
+ C

=
1
4
(sec θ tan θ − ln |sec θ + tan θ|) + C.

Weare not yet done. Our original integral is given in terms of x, whereas our final
answer, as given, is in terms of θ. We need to rewrite our answer in terms of x.
With a = 1/2, and x = 1

2 sec θ, we use the Pythagorean Theorem to determine
the lengths of the sides of the reference triangle in Figure 8.3.2.

1/2

√
x2 − 1/4

x

θ

Figure 8.3.2: A reference triangle for Ex‐
ample 8.3.3

tan θ =

√
x2 − 1

4
1
2

= 2
√

x2 − 1
4

and sec θ = 2x.

Therefore,∫ √
4x2 − 1 dx =

1
4

(
sec θ tan θ − ln |sec θ + tan θ|

)
+ C

=
1
4

(
2x · 2

√
x2 − 1

4
− ln

∣∣∣∣∣2x+ 2
√

x2 − 1
4

∣∣∣∣∣)+ C

=
1
4

(
4x
√

x2 − 1
4
− ln

∣∣∣∣∣2x+ 2
√

x2 − 1
4

∣∣∣∣∣)+ C

=
1
4

(
2x
√

4x2 − 1− ln
∣∣∣2x+√4x2 − 1

∣∣∣)+ C.

Example 8.3.4 Using Trigonometric Substitution

Evaluate
∫ √

4− x2

x2
dx.

SOLUTION We use Key Idea 8.3.1(a) with a = 2, x = 2 sin θ, dx =

Notes:
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2 cos θdθ and hence
√
4− x2 = 2 cos θ. This gives∫ √
4− x2

x2
dx =

∫
2 cos θ
4 sin2 θ

(2 cos θ) dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ

= − cot θ − θ + C.

√
4− x2

x2

θ

Figure 8.3.3: A reference triangle for Ex‐
ample 8.3.4

We need to rewrite our answer in terms of x. Using the Pythagorean Theorem
we determine the lengths of the sides of the reference triangle in Figure 8.3.3.
We have cot θ =

√
4− x2/x and θ = sin−1(x/2). Thus∫ √
4− x2

x2
dx = −

√
4− x2

x
− sin−1

( x
2

)
+ C.

Trigonometric Substitution can be applied inmany situations, even those not
of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example, we apply

it to an integral we already know how to handle.

Example 8.3.5 Using Trigonometric Substitution
Evaluate

∫
1

x2 + 1
dx.

SOLUTION We know the answer already as tan−1 x+ C. We apply Trig‐
onometric Substitution here to show that we get the same answer without in‐
herently relying on knowledge of the derivative of the arctangent function.

Using Key Idea 8.3.1(b), let x = tan θ, dx = sec2 θ dθ and note that x2 + 1 =
tan2 θ + 1 = sec2 θ. Thus∫

1
x2 + 1

dx =
∫

1
sec2 θ

sec2 θ dθ

=

∫
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that
∫

1
x2 + 1

dx = tan−1 x+ C.

The next example is similar to the previous one in that it does not involve a
square‐root. It shows how several techniques and identities can be combined
to obtain a solution.

Notes:
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8.3 Trigonometric Substitution

Example 8.3.6 Using Trigonometric Substitution
Evaluate

∫
1

(x2 + 6x+ 10)2
dx.

SOLUTION We start by completing the square, then make the substitu‐
tion u = x+ 3, followed by the trigonometric substitution of u = tan θ: Note: Remember the sine and co‐

sine double angle identities:

sin 2θ = 2 sin θ cos θ
cos 2θ = cos2 θ − sin2 θ

= 2 cos2 θ − 1
= 1− 2 sin2 θ

They are often needed for writing
your final answer in terms of x.

∫
1

(x2 + 6x+ 10)2
dx =

∫
1(

(x+ 3)2 + 1
)2 dx = ∫ 1

(u2 + 1)2
du.

Now make the substitution u = tan θ, du = sec2 θ dθ:

=

∫
1

(tan2 θ + 1)2
sec2 θ dθ

=

∫
1

(sec2 θ)2
sec2 θ dθ

=

∫
cos2 θ dθ.

Applying a half‐angle formula, we have

=

∫ (
1
2
+

1
2
cos(2θ)

)
dθ

=
1
2
θ +

1
4
sin(2θ) + C. (8.3.2)

We need to return to the variable x. As u = tan θ, θ = tan−1 u. Using the
identity sin(2θ) = 2 sin θ cos θ and using a reference triangle, we have

1
4
sin(2θ) =

1
2

u√
u2 + 1

· 1√
u2 + 1

=
1
2

u
u2 + 1

.

Finally, we return to xwith the substitution u = x+ 3. We start with the expres‐
sion in Equation (8.3.2):

1
2
θ +

1
4
sin(2θ) + C =

1
2
tan−1 u+

1
2

u
u2 + 1

+ C

=
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

Stating our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.
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Chapter 8 Techniques of Integration

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converting back to x) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.

Example 8.3.7 Definite integration and Trigonometric Substitution

Evaluate
∫ 5

0

x2√
x2 + 25

dx.

SOLUTION Using Key Idea 8.3.1(b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we substitute, we change the bounds of

integration.
The lower bound of the original integral is x = 0. As x = 5 tan θ, we solve for

θ and find θ = tan−1(x/5). Thus the new lower bound is θ = tan−1(0) = 0. The
original upper bound is x = 5, thus the new upper bound is θ = tan−1(5/5) =
π/4.

Thus we have∫ 5

0

x2√
x2 + 25

dx =
∫ π/4

0

25 tan2 θ
5 sec θ

5 sec2 θ dθ

= 25
∫ π/4

0
tan2 θ sec θ dθ.

We encountered this indefinite integral in Example 8.3.3 where we found∫
tan2 θ sec θ dθ =

1
2
(
sec θ tan θ − ln |sec θ + tan θ|

)
.

So

25
∫ π/4

0
tan2 θ sec θ dθ =

25
2

(sec θ tan θ − ln |sec θ + tan θ|)
∣∣∣∣π/4
0

=
25
2
(√

2− ln(
√
2+ 1)

)
.

The next section introduces Partial Fraction Decomposition, which is an alge‐
braic technique that turns “complicated” fractions into sums of “simpler” frac‐
tions, making integration easier.
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Exercises 8.3
Terms and Concepts
1. Trigonometric Substitutionworks on the same principles as

Integration by Substitution, though it can feel “ ”.
2. If one uses Trigonometric Substitution on an integrand con‐

taining
√
25− x2, then one should set x = .

3. Consider the Pythagorean Identity sin2 θ + cos2 θ = 1.
(a) What identity is obtained when both sides are divid‐

ed by cos2 θ?
(b) Use the new identity to simplify 9 tan2 θ + 9.

4. Why does Key Idea 8.3.1(a) state that
√
a2 − x2 = a cos θ,

and not |a cos θ|?

Problems
In Exercises 5–26, apply Trigonometric Substitution to evaluate
the indefinite integrals.

5.
∫ √

x2 + 1 dx

6.
∫ √

x2 − 1 dx

7.
∫ √

4x2 + 1 dx

8.
∫ √

1− 9x2 dx

9.
∫ √

16x2 − 1 dx

10.
∫

8√
x2 + 2

dx

11.
∫

3√
7− x2

dx

12.
∫

5√
x2 − 8

dx

13.
∫ √

x2 + 4 dx

14.
∫ √

1− x2 dx

15.
∫ √

9− x2 dx

16.
∫ √

x2 − 16 dx

17.
∫

7
x2 + 7

dx

18.
∫

3√
9− x2

dx

19.
∫

14√
5− x2

dx

20.
∫

2
x
√
x2 − 9

dx

21.
∫

5√
x4 − 16x2

dx

22.
∫

x√
1− x4

dx

23.
∫

1
x2 − 2x+ 8

dx

24.
∫

2√
−x2 + 6x+ 7

dx

25.
∫

3√
−x2 + 8x+ 9

dx

26.
∫

5
x2 + 6x+ 34

dx

In Exercises 27–34, evaluate the indefinite integrals. Somemay
be evaluated without Trigonometric Substitution.

27.
∫ √

x2 − 11
x

dx

28.
∫

x√
x2 − 3

dx

29.
∫

x
(x2 + 9)3/2

dx

30.
∫

5x2√
x2 − 10

dx

31.
∫

1
(x2 + 4x+ 13)2

dx

32.
∫

x2(1− x2)−3/2 dx

33.
∫ √

5− x2
7x2

dx

34.
∫

x2√
x2 + 3

dx

In Exercises 35–40, evaluate the definite integrals by mak‐
ing the proper trigonometric substitution and changing the
bounds of integration.

35.
∫ 1

−1

√
1− x2 dx

36.
∫ 8

4

√
x2 − 16 dx

37.
∫ 2

0

√
x2 + 4 dx

38.
∫ 1

−1

1
(x2 + 1)2

dx

39.
∫ 1

−1

√
9− x2 dx

40.
∫ 1

−1
x2
√
1− x2 dx

41. Find the volume of the solid of revolution obtained by ro‐
tating the region bounded by y = 0, y = x√

1+x2
, x = 0,

and x = 1:
(a) About the x‐axis, using the disk method.
(b) About the y‐axis, using the shell method.
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Chapter 8 Techniques of Integration

8.4 Partial Fraction Decomposition
In this sectionwe investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such functions arise in many contexts, one of which
is the solving of certain fundamental differential equations.

We beginwith an example that demonstrates themotivation behind this sec‐
tion. Consider the integral

∫
1

x2 − 1
dx. We do not have a simple formula for

this (if the denominatorwere x2+1, wewould recognize the antiderivative as be‐
ing the arctangent function). It can be solved using Trigonometric Substitution,
but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus ∫
1

x2 − 1
dx =

∫
1/2
x− 1

dx−
∫

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This section teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a rational function f(x) =
p(x)
q(x)

, where p and q do not have

any common factors. We first consider the degree of p and q.

• If the deg(p) ≥ deg(q) then we use polynomial long division to divide q
into p to determine a remainder r(x) where deg(r) < deg(q). We then

write f(x) = s(x)+
r(x)
q(x)

and apply partial fraction decomposition to
r(x)
q(x)

.

• If the deg(p) < deg(q) we can apply partial fraction decomposition to
p(x)
q(x)

without additional work.

Partial fraction decomposition is based on an algebraic theorem that guar‐
antees that any polynomial, and hence q, can use real numbers to factor into
the product of linear and irreducible quadratic factors.An irreducible quadratic is one that

cannot factor into linear terms with
real coefficients.

The following Key Idea
states how to decompose a rational function into a sum of rational functions
whose denominators are all of lower degree than q.

Notes:
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8.4 Partial Fraction Decomposition

Key Idea 8.4.1 Partial Fraction Decomposition
Let

p(x)
q(x)

be a rational function, where deg(p) < deg(q).

1. Factor q(x) :Write q(x) as the product of its linear and irreducible quadratic fac‐
tors of the form (ax + b)m and (ax2 + bx + c)n where m and n are the highest
powers of each factor that divide q.

• Linear Terms: For each linear factor of q(x) the decomposition of
p(x)
q(x)

will

contain the following terms:

A1

(ax+ b)
+

A2

(ax+ b)2
+ · · · Am

(ax+ b)m

• Irreducible Quadratic Terms: For each irreducible quadratic factor of q(x)

the decomposition of
p(x)
q(x)

will contain the following terms:

B1x+ C1
(ax2 + bx+ c)

+
B2x+ C2

(ax2 + bx+ c)2
+ · · · Bnx+ Cn

(ax2 + bx+ c)n

2. Finding the Coefficients Ai, Bi, and Ci:

• Set
p(x)
q(x)

equal to the sum of its linear and irreducible quadratic terms.

p(x)
q(x)

=
A1

(ax+ b)
+ · · · Am

(ax+ b)m
+

B1x+ C1
(ax2 + bx+ c)

+ · · · Bnx+ Cn
(ax2 + bx+ c)n

• Multiply this equation by the factored form of q(x) and simplify to clear the
denominators.

• Solve for the coefficients Ai, Bi, and Ci by
(a) multiplying out the remaining terms and collecting like powers of x,

equating the resulting coefficients and solving the resulting system of
linear equations, or

(b) substituting in values for x that eliminate terms so the simplified equa‐
tion can be solved for a coefficient.

Notes:
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Chapter 8 Techniques of Integration

Watch the video:
Integration Using method of Partial Fractions at
https://youtu.be/6qVgHWxdlZ0

The following examples will demonstrate how to put this Key Idea into prac‐
tice. In Example 8.4.1, we focus on the setting up the decomposition of a rational
function.

Example 8.4.1 Decomposing into partial fractions
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

without solving

for the resulting coefficients.

SOLUTION The denominator is already factored, as both x2+ x+ 2 and
x2+x+7 are irreducible quadratics. We need to decompose f(x) properly. Since
(x+ 5) is a linear factor that divides the denominator, there will be a

A
x+ 5

term in the decomposition.
As (x− 2)3 divides the denominator, we will have the following terms in the

decomposition:
B

x− 2
,

C
(x− 2)2

and
D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+ H
x2 + x+ 7

and
Ix+ J

(x2 + x+ 7)2
.

All together, we have

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=

A
x+ 5

+
B

x− 2
+

C
(x− 2)2

+
D

(x− 2)3
+

Ex+ F
x2 + x+ 2

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Notes:
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8.4 Partial Fraction Decomposition

Solving for the coefficients A, B, …, Jwould be a bit tedious but not “hard.” In the
next example we demonstrate solving for the coefficients using both methods
given in Key Idea 8.4.1.

Example 8.4.2 Decomposing into partial fractions
Perform the partial fraction decomposition of

1
x2 − 1

.

SOLUTION The denominator can bewritten as the product of two linear
factors: x2 − 1 = (x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

. (8.4.1)

Using the method described in Key Idea 8.4.1 2(a) to solve for A and B, first
multiply through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)
x+ 1

= A(x+ 1) + B(x− 1) (8.4.2)
= Ax+ A+ Bx− B
= (A+ B)x+ (A− B) collect like terms.

The next step is key. For clarity’s sake, rewrite the equality we have as

0x+ 1 = (A+ B)x+ (A− B).

On the left, the coefficient of the x term is 0; on the right, it is (A+B). Since both
sides are equal for all values of x, we must have that 0 = A + B. Likewise, on
the left, we have a constant term of 1; on the right, the constant term is (A−B).
Therefore we have 1 = A− B.

We have two linear equations with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1

⇒
A = 1/2
B = −1/2.

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.

Before solving for A and B using the method described in Key Idea 8.4.1 2(b),
we note that Equations (8.4.1) and (8.4.2) are not equivalent. Only the second
equation holds for all values of x, including x = −1 and x = 1, by continuity

Notes:
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Chapter 8 Techniques of Integration

of polynomials. Thus, we can choose values for x that eliminate terms in the
polynomial to solve for A and B.

1 = A(x+ 1) + B(x− 1).

If we choose x = −1,

1 = A(0) + B(−2)

B = −1
2
.

Next choose x = 1:

1 = A(2) + B(0)

A =
1
2
.

Resulting in the same decomposition as above.

In Example 8.4.3, we solve for the decomposition coefficients using the sys‐
tem of linear equations (method 2a). The margin note explains how to solve
using substitution (method 2b).

Example 8.4.3 Integrating using partial fractions
Use partial fraction decomposition to integrate

∫
1

(x− 1)(x+ 2)2
dx.

SOLUTION Wedecompose the integrand as follows, as described by Key
Idea 8.4.1:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
. (8.4.3)

To solve for A, B and C, we multiply both sides by (x− 1)(x+ 2)2 and collect like
terms:Note: Equations (8.4.3) and (8.4.4)

are not equivalent for x = 1 and x =
−2. However, due to the continuity
of polynomials we can let x = 1
to simplify the right hand side to
A(1 + 2)2 = 9A. Since the left hand
side is still 1, we have 1 = 9A, so
that A = 1/9.

Likewise,when x = −2; this leads
to the equation 1 = −3C. Thus
C = −1/3.

Knowing A and C, we can find the
value of B by choosing yet another
value of x, such as x = 0, and solving
for B.

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (8.4.4)
= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C
= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equations

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

Notes:
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8.4 Partial Fraction Decomposition

These three equations of three unknowns lead to a unique solution:

A = 1/9, B = −1/9 and C = −1/3.

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9
x− 1

dx+
∫

−1/9
x+ 2

dx+
∫

−1/3
(x+ 2)2

dx.

Each can be integratedwith a simple substitutionwith u = x−1 or u = x+2.
The end result is∫

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Example 8.4.4 Integrating using partial fractions

Use partial fraction decomposition to integrate
∫

x3

(x− 5)(x+ 3)
dx.

SOLUTION Key Idea 8.4.1 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 8.4.1, we can rewrite the new rational function as:
19x+ 30

(x− 5)(x+ 3)
=

A
x− 5

+
B

x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5).

As in the previous examples we choose values of x to eliminate terms in the
polynomial. If we choose x = −3,

19(−3) + 30 = A(0) + B(−8)

B =
27
8
.

Next choose x = 5:

19(5) + 30 = A(8) + B(0)

A =
125
8

.

Notes:
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Chapter 8 Techniques of Integration

We can now integrate:∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.

Before the next example we remind the reader of a rational integrand eval‐
uated by trigonometric substitution:∫

1
x2 + a2

dx =
1
a
tan−1

( x
a

)
+ C.

Example 8.4.5 Integrating using partial fractions

Use partial fraction decomposition to evaluate
∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

SOLUTION The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 8.4.1. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1).

Again, we choose values of x to eliminate terms in the polynomial. If we choose
x = −1,

30 = 6A+ (−B+ C)(0)
A = 5.

Although none of the other terms can be zeroed out, we continue by letting
A = 5 and substituting helpful values of x. Choosing x = 0, we notice

54 = 55+ C
C = −1.

Finally, choose x = 1 (any value other than −1 and 0 can be used, 1 is easy to
work with)

92 = 90+ (B− 1)(2)
B = 2.

Notes:
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8.4 Partial Fraction Decomposition

Thus ∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx.

Thefirst termof this new integrand is easy to evaluate; it leads to a 5 ln |x+ 1|
term. The second term is not hard, but takes several steps and uses substitution
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadratic in the denominator and a linear

term in the numerator. This leads us to try substitution. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6
term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

We can now integrate the first term with substitution, yielding ln
∣∣x2 + 6x+ 11

∣∣.
The final term can be integrated using arctangent. First, complete the square in
the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An antiderivative of the latter term can be found using Key Idea 8.3.1 and sub‐
stitution: ∫

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx

=

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln
∣∣x2 + 6x+ 11

∣∣− 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately after seeing the problem.
Rather, given the initial problem, we break it down into smaller problems that
are easier to solve. The final answer is a combination of the answers of the
smaller problems.

Notes:
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Chapter 8 Techniques of Integration

Partial Fraction Decomposition is an important tool when dealing with ratio‐
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.
The next sectionwill require the reader to determine an appropriatemethod for
evaluating a variety of integrals.

Notes:
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Exercises 8.4
Terms and Concepts
1. Fill in the blank: Partial Fraction Decomposition is a meth‐

od of rewriting functions.
2. T/F: It is sometimes necessary to use polynomial division

before using Partial Fraction Decomposition.

3. Decompose 1
x2 − 3x

without solving for the coefficients, as
done in Example 8.4.1.

4. Decompose 7− x
x2 − 9

without solving for the coefficients, as
done in Example 8.4.1.

5. Decompose x− 3
x2 − 7

without solving for the coefficients, as
done in Example 8.4.1.

6. Decompose 2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 8.4.1.

Problems
In Exercises 7–34, evaluate the indefinite integral.

7.
∫

7x+ 7
x2 + 3x− 10

dx

8.
∫

7x− 2
x2 + x

dx

9.
∫

−4
3x2 − 12

dx

10.
∫

x+ 7
(x+ 5)2

dx

11.
∫

−3x− 20
(x+ 8)2

dx

12.
∫

9x2 + 11x+ 7
x(x+ 1)2

dx

13.
∫

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

14.
∫

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

15.
∫

x2 + x+ 1
x2 + x− 2

dx

16.
∫

x3

x2 − x− 20
dx

17.
∫

2x2 − 4x+ 6
x2 − 2x+ 3

dx

18.
∫

1
x3 + 2x2 + 3x

dx

19.
∫

dx
x4 − x2

20.
∫

x2 + x+ 5
x2 + 4x+ 10

dx

21.
∫

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

22.
∫

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

23.
∫

1− x+ 2x2 − x3

x(x2 + 1)2
dx

24.
∫

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

25.
∫

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

26.
∫

x3 + x2 + 2x+ 1
(x2 + 1)(x2 + 2)

dx

27.
∫

x
x4 + 4x2 + 3

dx

28.
∫

x− 3
(x2 + 2x+ 4)2

dx

29.
∫

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

30.
∫

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

31.
∫

1
x4 − 16

dx

32.
∫

1
x2 + x

dx

33.
∫

1
x(x2 + 1)2

dx

34.
∫

2x2

(x2 + 1)2
dx

In Exercises 35–38, evaluate the definite integral.

35.
∫ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

36.
∫ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

37.
∫ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

38.
∫ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx

39. Recall that
d
dx

sinh−1 x = 1√
x2 + 1

Now use a trigonometric substitution to evaluate the indef‐
inite integral ∫

1√
x2 + 1

dx

and show that

sinh−1 x = ln(x+
√
x2 + 1).
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Chapter 8 Techniques of Integration

8.5 Integration Strategies
We’ve now seen a fair number of different integration techniques and so we
should probably pause at this point to talk a little bit about a strategy to use for
determining the correct technique to use when faced with an integral.

There are a couple of points that need to be made about this strategy. First,
it isn’t a hard and fast set of rules for determining the method that should be
used. It is really nothing more than a general set of guidelines that will help us
to identify techniques that may work. Some integrals can be done in more than
one way and so depending on the path you take through the strategy you may
end up with a different technique than someone else who also went through
this strategy.

Second, while the strategy is presented as a way to identify the technique
that could be used on an integral keep in mind that, for many integrals, it can
also automatically exclude certain techniques as well. When going through the
strategy keep two lists in mind. The first list is integration techniques that sim‐
ply won’t work and the second list is techniques that look like they might work.
After going through the strategy, if the second list has only one entry then that
is the technique to use. If on the other hand, there is more than one possible
technique to use we will have to decide on which is liable to be the best for us
to use. Unfortunately there is no way to teach which technique is the best as
that usually depends upon the person and which technique they find to be the
easiest.

Third, don’t forget thatmany integrals can be evaluated inmultiple ways and
somore than one techniquemay be used on it. This has already beenmentioned
in each of the previous points, but is important enough to warrant a separate
mention. Sometimes one technique will be significantly easier than the others
and so don’t just stop at the first technique that appears towork. Always identify
all possible techniques and then go back and determine which you feel will be
the easiest for you to use.

Next, it’s entirely possible that you will need to use more than one method
to completely evaluate an integral. For instance a substitutionmay lead to using
integration by parts or partial fractions integral.

Notes:
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8.5 Integration Strategies

Key Idea 8.5.1 Guidelines for Choosing an Integration Strategy
1. Simplify the integrand, if possible.

2. See if a “simple” substitution will work.

3. Identify the type of integral.

4. Relate the integral to an integral we already know how to do.

5. Try multiple techniques.

6. Try again.

Let’s expand on the ideas of the previous Key Idea.

1. Simplify the integrand, if possible. This step is very important in the in‐
tegration process. Many integrals can be taken from very difficult to very
easy with a little simplification or manipulation. Don’t forget basic trigo‐
nometric and algebraic identities as these can often be used to simplify
the integral.
We used this idea when we were looking at integrals involving trigonome‐
tric functions. For example consider the integral∫

cos2 x dx.

The integral can’t be done as it is, however by recalling the identity,

cos2 x =
1
2
(1+ cos 2x)

the integral becomes very easy to do.
Note that this example also shows that simplification does not necessarily
mean that we’ll write the integrand in a “simpler” form. It only means
that we’ll write the integrand in a form that we can deal with and this is
often longer and/or “messier” than the original integral.

2. See if a “simple” substitution will work. Look to see if a simple substi‐
tution can be used instead of the often more complicated methods from
this chapter. For example consider both of the following integrals.∫

x
x2 − 1

dx
∫

x
√

x2 − 1 dx

Notes:
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Chapter 8 Techniques of Integration

The first integral can be done with the method of partial fractions and the
second could be done with a trigonometric substitution.

However, both could also be evaluated using the substitution u = x2 − 1
and the work involved in the substitution would be significantly less than
the work involved in either partial fractions or trigonometric substitution.

So, always look for quick, simple substitutions before moving on to the
more complicated techniques of this chapter.

3. Identify the type of integral. Note that any integral may fall into more
than one of these types. Because of this fact it’s usually best to go all the
way through the list and identify all possible types since onemay be easier
than the other and it’s entirely possible that the easier type is listed lower
in the list.

(a) Is the integrand a rational expression (i.e. is the integrand a poly‐
nomial divided by a polynomial)? If so then partial fractions (Sec‐
tion 8.4) may work on the integral.

(b) Is the integrand a polynomial times a trigonometric function, expo‐
nential, or logarithm? If so, then integration by parts (Section 8.1)
may work.

(c) Is the integrand a product of sines and cosines, secants and tan‐
gents, or cosecants and cotangents? If so, then the topics from Sec‐
tion 8.2maywork. Likewise, don’t forget that some quotients involv‐
ing these functions can also be done using these techniques.

(d) Does the integrand involve
√
b2x2 + a2,

√
b2x2 − a2, or

√
a2 − b2x2?

If so, then a trigonometric substitution (Section 8.3)might work nice‐
ly.

(e) Does the integrand have roots other than those listed above in it? If
so then the substitution u = n

√
g(x)might work.

(f) Does the integrand have a quadratic in it? If so then completing the
square on the quadratic might put it into a form that we can deal
with.

4. Relate the integral to an integral we already know how to do. In other
words, can we use a substitution or manipulation to write the integrand
into a form that does fit into the forms we’ve looked at previously in this
chapter. A typical example is the following integral.∫

cos x
√

1+ sin2 x dx

Notes:
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This integral doesn’t obviously fit into any of the forms we looked at in
this chapter. However, with the substitution u = sin x we can reduce the
integral to the form ∫ √

1+ u2 dx

which is a trigonometric substitution problem.

5. Try multiple techniques. In this step we need to ask ourselves if it is possi‐
ble that we’ll need to use multiple techniques. The example in the previ‐
ous part is a good example. Using a substitution didn’t allow us to actually
do the integral. All it did was put the integral into a form that we could
use a different technique on.
Don’t ever get locked into the idea that an integral will only require one
step to completely evaluate it. Many will require more than one step.

6. Try again. If everything that you’ve tried to this point doesn’t work then
go back through the process again. This time try a technique that you
didn’t use the first time around.

As noted above, this strategy is not a hard and fast set of rules. It is only
intended to guide you through the process of best determining how to do any
given integral. Note as well that the only place Calculus II actually arises is the
third step. Steps 1, 2, and 4 involve nothing more than manipulation of the
integrand either through direct manipulation of the integrand or by using a sub‐
stitution. The last two steps are simply ideas to think about in going through this
strategy.

Many students go through this process and concentrate almost exclusively
on Step 3 (after all this is Calculus II, so it’s easy to see why they might do that...)
to the exclusion of the other steps. One very large consequence of that exclusion
is that often a simplemanipulation or substitution is overlooked that couldmake
the integral very easy to do.

Before moving on to the next section we will work a couple of examples
illustrating a couple of not so obvious simplifications/manipulations and a not
so obvious substitution.

Example 8.5.1 Strategies of Integration
Evaluate the integral ∫

tan x
sec4 x

dx

SOLUTION This integral almost falls into the form given in 3c. It is a
quotient of tangent and secant and we know that sometimes we can use the
same methods for products of tangents and secants on quotients.

Notes:
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Chapter 8 Techniques of Integration

The process from Section 8.2 tells us that if we have even powers of secant
to save two of them and convert the rest to tangents. That won’t work here. We
can save two secants, but they would be in the denominator and they won’t do
us any good here. Remember that the point of saving them is so they could be
there for the substitution u = tan x. That requires them to be in the numerator.
So, that won’t work. We need to find another solution method.

There are in fact two solution methods to this integral depending on how
you want to go about it.

Solution 1 In this solution method we could just convert everything to
sines and cosines and see if that gives us an integral we can deal with.∫

tan x
sec4 x

dx =
∫

sin x
cos x

cos4 x dx

=

∫
sin x cos3 x dx substitute u = cos x

= −
∫

u3 du

= −1
4
cos4 x+ C

Note that just converting to sines and cosines won’t always work and if it
does it won’t always work this nicely. Often there will be a lot more work that
would need to be done to complete the integral.

Solution 2 This solution method goes back to dealing with secants and
tangents. Let’s notice that if we had a secant in the numerator we could just use
u = sec x as a substitution and it would be a fairly quick and simple substitution
to use. We don’t have a secant in the numerator. However we could very easily
get a secant in the numerator by multiplying the numerator and denominator
by secant (i.e. we multiply the integrand by “1”).∫

tan x
sec4 x

dx =
∫

tan x sec x
sec5 x

dx substitute u = sec x

=

∫
1
u5

du

= −1
4

1
sec4 x

+ C

= −1
4
cos4 x+ C

In the previous examplewe saw two “simplifications” that allowed us to eval‐
uate the integral. The first was using identities to rewrite the integral into terms

Notes:
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8.5 Integration Strategies

we could deal with and the second involved multiplying the numerator and de‐
nominator by something to again put the integral into terms we could deal with.

Using identities to rewrite an integral is an important “simplification” andwe
should not forget about it. Integrals can often be greatly simplified or at least
put into a form that can be dealt with by using an identity.

The second “simplification” is not used as often, but does show up on oc‐
casion so again, it’s best to remember it. In fact, let’s take another look at an
example in which multiplying the integrand by “1” will allow us to evaluate an
integral.

Example 8.5.2 Strategy for Integration
Evaluate the integral ∫

1
1+ sin x

dx

SOLUTION This is an integral which if we just concentrate on the third
step we won’t get anywhere. This integral doesn’t appear to be any of the kinds
of integrals that we worked on in this chapter. We can evaluate the integral
however, if we do the following,∫

1
1+ sin x

dx =
∫

1
1+ sin x

1− sin x
1− sin x

dx

=

∫
1− sin x
1− sin2 x

dx

This does not appear to have done anything for us. However, if we now
remember the first “simplification” we looked at above we will notice that we
can use an identity to rewrite the denominator. Once we do that we can further
manipulate the integrand into something we can evaluate.∫

1
1+ sin x

dx =
∫

1− sin x
cos2 x

dx

=

∫
1

cos2 x
− sin x

cos x
1

cos x
dx

=

∫
sec2 x− tan x sec x dx

= tan x− sec x+ C

So, we’ve just seen once again that multiplying by a helpful form of “1” can
put the integral into a formwe can integrate. Notice as well that this example al‐
so showed that “simplifications” do not necessarily put an integral into a simpler
form. They only put the integrand into a form that is easier to integrate.

Notes:
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Chapter 8 Techniques of Integration

Let’s now take a quick look at an example of a substitution that is not so
obvious.

Example 8.5.3 Strategy for Integration
Evaluate the integral ∫

cos
√
x dx

SOLUTION We introduced this integral by saying that the substitution
was not so obvious. However, this is really an integral that falls into the form
given by 3e in Key Idea 8.5.1. Many people miss that form and so don’t think
about it. So, let’s try the following substitution.

u =
√
x x = u2 dx = 2u du

With this substitution the integral becomes,∫
cos

√
x dx = 2

∫
u cos u du

This is now an integration by parts. Remember that often we will need to use
more than one technique to completely do the integral. This is a fairly simple
integration by parts problem so we’ll leave the remainder of the details for you
to check. ∫

cos
√
x dx = 2(cos

√
x+

√
x sin

√
x) + C.

It will be possible to integrate every integral assigned in this class, but it is im‐
portant to note that there are integrals that just can’t be evaluated. We should
also note that after we look at series in Chapter 9 we will be able to write down
a series representation of many of these types of integrals.

Notes:
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Exercises 8.5
Problems
In Exercises 1–52, compute the indefinite integral.

1.
∫

sin−1 x dx

2.
∫

cos3 2x sin2 2x dx

3.
∫

4x2 − 12x− 10
(x− 2)(x2 − 4x+ 3)

dx

4.
∫

tan x sec5 x dx

5.
∫

1
(x2 + 25)3/2

dx

6.
∫ √

4− x2
x

dx

7.
∫

x3 + 1
x(x− 1)3

dx

8.
∫

x√
4+ 4x− x2

dx

9.
∫

x3ex
2
dx

10.
∫ 3√x+ 8

x
dx

11.
∫

e2x sin 3x dx

12.
∫

cos3 x sin3 x dx

13.
∫

x√
4− x2

dx

14.
∫

x5 − x3 + 1
x3 + 2x2

dx

15.
∫

1
x3/2 + x1/2

dx

16.
∫

ex sec ex dx

17.
∫

x2 sin 3x dx

18.
∫

sin3 x
√
cos x dx

19.
∫

ex
√
ex + 1 dx

20.
∫

x2√
4x2 + 9

dx

21.
∫

sec2 x tan2 x dx

22.
∫

x csc x cot x dx

23.
∫

x2(8− x3)1/3 dx

24.
∫

sin
√
x dx

25.
∫

x
√
3− 2x dx

26.
∫

e3x

1+ ex
dx

27.
∫

x2 − 4x+ 3√
x

dx

28.
∫

x3√
16− x2

dx

29.
∫

1− 2x
x2 + 12x+ 35

dx

30.
∫

tan−1 5x dx

31.
∫

etan x

cos2 x
dx

32.
∫

1√
7+ 5x2

dx

33.
∫

cot6 x dx

34.
∫

x3
√
x2 − 25 dx

35.
∫

(x2 − sech2 4x) dx

36.
∫

x2e−4x dx

37.
∫

3√
11− 10x− x2

dx

38.
∫

x3 − 20x2 − 63x− 198
x4 − 1

dx

39.
∫

tan3 x sec x dx

40.
∫

(x3 + 1) cos x dx

41.
∫ √

9− 4x2
x2

dx

42.
∫

(5− cot 3x)2 dx

43.
∫

1
x(
√
x− 4

√
x)

dx

44.
∫

sin x√
1+ cos x

dx

45.
∫

x2

(25+ x2)2
dx

46.
∫

2x3 + 4x2 + 10x+ 13
x4 + 9x2 + 20

dx

47.
∫

(x2 − 2)2

x
dx

48.
∫

x3/2 ln x dx

49.
∫

x2
3√2x+ 3

dx
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50.
∫

xex

(x+ 1)2
dx

51.
∫

tan 7x cos 7x dx

52.
∫

x sin−1 x dx

53. Show that if t = tan θ
2 , then

sin θ =
2t

1+ t2
cos θ =

1− t2

1+ t2
and dθ

dt
=

2
1+ t2

.

Explain how this substitution transforms a rational trigono‐
metric function into a rational function. (This is known as
the tangent half‐angle substitution and sometimes known
as the Weierstrass substitution.)

54. Use the substitution of the previous exercise to evaluate∫
sec θ dθ.

55. Use the substitution of the previous exercise to evaluate∫
1

sin θ + tan θ
dθ.
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8.6 Improper Integration

8.6 Improper Integration
We begin this section by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

Notice how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 8.6.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

5 10

0.5

1

x

y

Figure 8.6.1: Graphing f(x) = 1
1+ x2

.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two stipulations:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

In this section we consider integrals where one or both of the above condi‐
tions do not hold. Such integrals are called improper integrals.

Notes:
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Improper Integrals with Infinite Bounds

Definition 8.6.1 Improper Integrals with Infinite Bounds

1. Let f be a continuous function on [a,∞). For t ≥ a let∫ ∞

a
f(x) dx = lim

t→∞

∫ t

a
f(x) dx.

2. Let f be a continuous function on (−∞, b]. For t ≤ b let∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t
f(x) dx.

3. Let f be a continuous function on (−∞,∞). For any real number
c (which one doesn’t matter), let∫ ∞

−∞
f(x) dx = lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists and
is finite; otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Watch the video:
Improper Integral — Infinity in Upper and Lower
Limits at
https://youtu.be/f6cGotvktxs

Example 8.6.1 Evaluating improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

Notes:
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8.6 Improper Integration

SOLUTION

1.

f(x) =
1
x2

1 5 10

0.5

1

x

y

Figure 8.6.2: A graph of f(x) = 1
x2 in

Example 8.6.1 part 1.

∫ ∞

1

1
x2

dx = lim
t→∞

∫ t

1

1
x2

dx

= lim
t→∞

−1
x

∣∣∣∣t
1

= lim
t→∞

−1
t

+ 1

= 1.
A graph of the area defined by this integral is given in Figure 8.6.2.

2.

f(x) =
1
x

1 5 10

0.5

1

x

y

Figure 8.6.3: A graph of f(x) = 1
x in

Example 8.6.1 part 2.

∫ ∞

1

1
x
dx = lim

t→∞

∫ t

1

1
x
dx

= lim
t→∞

ln |x|
∣∣∣t
1

= lim
t→∞

ln(t)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 8.6.2 and 8.6.3; notice how the values of
f(x) = 1/x are noticeably larger than those of f(x) = 1/x2. This difference
is enough to cause the improper integral to diverge.

3.

f(x) = ex

−1−5−10

1

x

y

Figure 8.6.4: A graph of f(x) = ex in
Example 8.6.1 part 3.

∫ 0

−∞
ex dx = lim

t→−∞

∫ 0

t
ex dx

= lim
t→−∞

ex
∣∣∣0
t

= lim
t→−∞

(
e0 − et

)
= 1.

A graph of the area defined by this integral is given in Figure 8.6.4.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of Definition 8.6.1. Any value of c is fine; we choose c = 0.

Notes:
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f(x) =
1

1 + x2

−10 −5 5 10

1

x

y

Figure 8.6.5: A graph of f(x) = 1
1+x2 in

Example 8.6.1 part 4.

∫ ∞

−∞

1
1+ x2

dx = lim
t→−∞

∫ 0

t

1
1+ x2

dx+ lim
t→∞

∫ t

0

1
1+ x2

dx

= lim
t→−∞

tan−1 x
∣∣∣0
t
+ lim

t→∞
tan−1 x

∣∣∣t
0

= lim
t→−∞

(
tan−1 0− tan−1 t

)
+ lim

t→∞

(
tan−1 t− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

= π.

A graph of the area defined by this integral is given in Figure 8.6.5.

Section 7.5 introduced L’Hôpital’s Rule, a method of evaluating limits that
return indeterminate forms. It is not uncommon for the limits resulting from
improper integrals to need this rule as demonstrated next.

Example 8.6.2 Improper integration and L’Hôpital’s Rule
Evaluate the improper integral

∫ ∞

1

ln x
x2

dx.

SOLUTION This integral will require the use of Integration by Parts. Let
u = ln x and dv = 1/x2 dx. Then

f(x) =
ln x
x2

1 5 10

0.2

0.4

x

y

Figure 8.6.6: A graph of f(x) = ln x
x2 in

Example 8.6.2.

∫ ∞

1

ln x
x2

dx = lim
t→∞

∫ t

1

ln x
x2

dx

= lim
t→∞

(
− ln x

x

∣∣∣t
1
+

∫ t

1

1
x2

dx
)

= lim
t→∞

(
− ln x

x
− 1

x

)∣∣∣∣t
1

= lim
t→∞

(
− ln t

t
− 1

t
− (− ln 1− 1)

)
.

The 1/t goes to 0, and ln 1 = 0, leaving lim
t→∞

ln t
t

with L’Hôpital’s Rule. We have:

lim
t→∞

ln t
t

by LHR
= lim

t→∞

1/t
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.

Notes:
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Improper Integrals with Infinite Range
We have just considered definite integrals where the interval of integration was
infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.

Definition 8.6.2 Improper Integration with Infinite Range
Let f(x) be a continuous function on [a, b] except at c, a ≤ c ≤ b, where
x = c is a vertical asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

Note that c can be one of the endpoints (a or b). In that case, there is only
one limit to consider as part of the definition.

Example 8.6.3 Improper integration of functions with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

SOLUTION

1. A graph of f(x) = 1/
√
x is given in Figure 8.6.7.

f(x) =
1
√
x

0.5 1

5

10

x

y

Figure 8.6.7: A graph of f(x) = 1√
x in

Example 8.6.3.

Notice that f has a vertical
asymptote at x = 0. In some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

t→0+

∫ 1

t

1√
x
dx

= lim
t→0+

2
√
x
∣∣∣1
t

= lim
t→0+

2
(√

1−
√
t
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathematics when considering
the infinite).

2. The function f(x) = 1/x2 has a vertical asymptote at x = 0, as shown
in Figure 8.6.8, so this integral is an improper integral. Let’s eschew using
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Chapter 8 Techniques of Integration

limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2.

f(x) =
1
x2

−1 −0.5 0.5 1

5

10

x

y

Figure 8.6.8: A graph of f(x) = 1
x2 in Ex‐

ample 8.6.3.

Clearly the area in question is above the x‐axis, yet the area is supposedly
negative. In this example we noted the discontinuity of the integrand on
[−1, 1] (its improper nature) but continued anyway to apply the Funda‐
mental Theorem of Calculus. Violating the hypothesis of the FTC led us
to an incorrect area of −2. If we now evaluate the integral using Defini‐
tion 8.6.2 we will see that the area is unbounded.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

(
−1
t
− 1
)
+ lim

t→0+

(
−1+

1
t

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence

Oftentimes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integrating.

Our first tool is knowing the behavior of functions of the form
1
xp

.

Example 8.6.4 Improper integration of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.
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8.6 Improper Integration

SOLUTION We begin by integrating and then evaluating the limit.∫ ∞

1

1
xp

dx = lim
t→∞

∫ t

1

1
xp

dx

= lim
t→∞

∫ t

1
x−p dx (assume p ̸= 1)

= lim
t→∞

1
−p+ 1

x−p+1
∣∣∣t
1

= lim
t→∞

1
1− p

(
t1−p − 11−p).

f(x) =
1
x q

f(x) =
1
x p

p < 1 < q

1
x

y

Figure 8.6.9: Plotting functions of the
form 1/x p in Example 8.6.4.

When does this limit converge — i.e., when is this limit not ∞? This limit con‐
verges precisely when the power of t is less than 0: when 1− p < 0 ⇒ 1 < p.

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 8.6.1 that when p = 1
the integral also diverges.

Figure 8.6.9 graphs y = 1/x with a dashed line, along with graphs of y =
1/xp, p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing
line between convergence and divergence.

The result of Example 8.6.4 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

Key Idea 8.6.1 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose

Notes:
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Chapter 8 Techniques of Integration

convergence is known. We often use integrands of the form 1/xp in compar‐
isons as their convergence on certain intervals is known. This is described in the
following theorem.

Note: We used the upper and lower
bound of “1” in Key Idea 8.6.1 for
convenience. It can be replaced by
any a where a > 0. Theorem 8.6.1 Direct Comparison Test for Improper Integrals

Let f and g be continuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Example 8.6.5 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

SOLUTION

1. The function f(x) = e−x2 does not have an antiderivative expressible in
terms of elementary functions, so we cannot integrate directly. It is com‐
parable to g(x) = 1/x2, and as demonstrated in Figure 8.6.10, e−x2 <

1/x2 on [1,∞). We know from Key Idea 8.6.1 that
∫ ∞

1

1
x2

dx converges,

hence
∫ ∞

1
e−x2 dx also converges.

f(x) = e−x2

f(x) =
1
x2

1 2 3 4

0.5

1

x

y

Figure 8.6.10: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 8.6.5.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 8.6.1 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek

to compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.
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8.6 Improper Integration

Using Theorem 8.6.1, we conclude that since
∫ ∞

3

1
x
dx diverges, then∫ ∞

3

1√
x2 − x

dx diverges as well. Figure 8.6.11 illustrates this.

f(x) =
1

√
x2 − x

f(x) =
1
x

2 4 6

0.2

0.4

x

y

Figure 8.6.11: Graphs of f(x) =
1/

√
x2 − x and f(x) = 1/x in Exam‐

ple 8.6.5.

Being able to compare “unknown” integrals to “known” integrals is very use‐
ful in determining convergence. However, some of our examples were a little
“too nice.” For instance, it was convenient that

1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x + 5”? That is, what can we say about the con‐

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 8.6.1.
In cases like this (and many more) it is useful to employ the following theo‐

rem.

Theorem 8.6.2 Limit Comparison Test for Improper Integrals
Let f and g be continuous functions on [a,∞)where f(x) > 0 and g(x) >
0 for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

Example 8.6.6 Determining convergence of improper integrals
Determine the convergence of

∫ ∞

3

1√
x2 + 2x+ 5

dx.

SOLUTION As x gets large, the square root of a quadratic function will
begin to behave much like y = x. So we compare 1√

x2 + 2x+ 5
to 1

x
with the

Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evaluation of this limit returns∞/∞, an indeterminate form.
Using L’Hôpital’s Rule seems appropriate, but in this situation, it does not lead
to useful results. (We encourage the reader to employ L’Hôpital’s Rule at least
once to verify this.)
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Chapter 8 Techniques of Integration

The trouble is the square root function. We determine the limit by using a
technique we learned in Key Idea 1.5.1:

f(x) =
1
x

f(x) =
1

√
x2 + 2x + 5

5 10 15 20

0.2

x

y

Figure 8.6.12: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 8.6.6.

lim
x→∞

x√
x2 + 2x+ 5

= lim
x→∞

x
x√

x2+2x+5
x2

= lim
x→∞

1√
1+ 2

x +
5
x2

= 1

Since we know that
∫ ∞

3

1
x dx diverges, by the Limit Comparison Test we know

that
∫ ∞

3

1√
x2+2x+5 dx also diverges. Figure 8.6.12 graphs f(x) = 1/

√
x2 + 2x+ 5

and f(x) = 1/x, illustrating that as x gets large, the functions become indistin‐
guishable.

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

This chapter has explored many integration techniques. We learned Inte‐
gration by Parts, which reverses the Product Rule of differentiation. We also
learned specialized techniques for handling trigonometric and rational functions.
All techniques effectively have this goal in common: rewrite the integrand in a
new way so that the integration step is easier to see and implement.

As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible towrite in terms of elementary functions, and
even when a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer
algebra systemMathematica® has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in‐
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximating
the value of integration.
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Exercises 8.6
Terms and Concepts

1. The definite integral was defined with what two stipula‐
tions?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems

In Exercises 7–36, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

−∞

x
x2 + 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 3

0

1
x
dx

20.
∫ 1

−1

1
x
dx

21.
∫ 5

2

dx√
x− 2

22.
∫ 9

1

dx
3√9− x

23.
∫ 3

1

1
x− 2

dx

24.
∫ π

0
sec2 x dx

25.
∫ π

2

0
sec x dx

26.
∫ 1

−2

1√
|x|

dx

27.
∫ ∞

0
xe−x dx

28.
∫ ∞

0
xe−x2 dx

29.
∫ ∞

−∞
xe−x2 dx

30.
∫ ∞

−∞

1
ex + e−x dx

31.
∫ 1

0
x ln x dx

32.
∫ ∞

1

ln x
x

dx

33.
∫ 1

0
ln x dx

34.
∫ ∞

1

ln x
x2

dx

35.
∫ ∞

1

ln x√
x
dx

36.
∫ ∞

0
e−x sin x dx

In Exercises 37–46, use the Direct Comparison Test or the Limit
Comparison Test to determine whether the given definite inte‐
gral converges or diverges. Clearly statewhat test is being used
and what function the integrand is being compared to.

37.
∫ ∞

10

3√
3x2 + 2x− 5

dx

38.
∫ ∞

2

4√
7x3 − x

dx

39.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

40.
∫ ∞

1
e−x ln x dx

41.
∫ ∞

5
e−x2+3x+1 dx

42.
∫ ∞

0

√
x

ex
dx

43.
∫ ∞

2

1
x2 + sin x

dx

44.
∫ ∞

0

x
x2 + cos x

dx
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45.
∫ ∞

0

1
x+ ex

dx

46.
∫ ∞

0

1
ex − x

dx

47. In probability theory, the lifetimes of certain devices (e.g.
certain types of fuses and light bulbs) are modeled by an
Exponential Distribution.
(a) The probability that a device lasts more than a (time

units) is
∫∞
a λe−λx dxwhereλ is a parameter that de‐

pends on the type of device. Evaluate this integral.
(b) The expected lifetime of the device is given by∫∞

0 xλe−λx dx. Evaluate this integral.
(c) What is the probability that a given device lasts more

than the expected lifetime for such devices?

48. For n > 0, the gamma function is defined by Γ(n) =∫ ∞

0
xn−1e−x dx.

(a) Show that Γ(1) = 1.
(b) Show that Γ(n+ 1) = nΓ(n) for n > 1.
(c) Conclude that Γ(n+1) = n! for integers n such that

n ≥ 1.
(d) Show that this converges for 0 < n < 1.
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8.7 Numerical Integration

8.7 Numerical Integration
The Fundamental Theoremof Calculus gives a concrete technique for finding the
exact value of a definite integral. That technique is based on computing antider‐
ivatives. Despite the power of this theorem, there are still situations where we
must approximate the value of the definite integral instead of finding its exact
value. The first situation we explore is where we cannot compute an antideriv‐
ative of the integrand. The second case is when we actually do not know the
integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomi‐
als, nth roots, rational, exponential, logarithmic and trigonometric functions and
their inverses. We can compute the derivative of any elementary function, but
there are many elementary functions of which we cannot compute an antideriv‐
ative. For example, the following functions do not have antiderivatives that we
can express with elementary functions:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the antiderivatives of e−x2 is to simply write∫
e−x2 dx.

y = e−x2

0.5 1

0.5

1

x

y

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

y =
sin x
x

5 10 15

0.5

1

x

y

Figure 8.7.1: Graphically representing
three definite integrals that cannot be
evaluated using antiderivatives.

This section outlines three common methods of approximating the value of
definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 8.7.1.

The Left and Right Hand Rule Methods
In Section 5.3 we addressed the problem of evaluating definite integrals by ap‐
proximating the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We partition [a, b] into n
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Chapter 8 Techniques of Integration

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these
subintervals are labeled as

x0 = a, x1 = a+∆x, x2 = a+ 2∆x, . . . , xi = a+ i∆x, . . . , xn = b.

Section 5.3 showed that to use the Left Hand Rule we use the summation
n∑

i=1
f(xi−1)∆x and to use the Right Hand Rule we use

n∑
i=1

f(xi)∆x. We review

the use of these rules in the context of examples.

Example 8.7.1 Approximating definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dxusing the LeftandRightHandRuleswith 5 equally spaced

subintervals.

SOLUTION We begin by partitioning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, and x5 = 1.

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

Figure 8.7.2: Approximating
∫ 1

0
e−x2 dx

in Example 8.7.1 using (top) the left
hand rule and (bottom) the right hand
rule.

Using the Left Hand Rule, we have:

n∑
i=1

f(xi−1)∆x =
(
f(x0) + f(x1) + f(x2) + f(x3) + f(x4)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527

)
(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368

)
(0.2)

≈ 0.681.

Figure 8.7.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this particular case, the Left Hand
Rule is an over approximation and the Right Hand Rule is an under approxima‐
tion. To get a better approximation, we could use more rectangles, as we did in
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8.7 Numerical Integration

Section 5.3. We could also average the Left and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places after the decimal, is 0.7468, showing our
average is a good approximation.

xi Exact Approx. sin(x3i )

x0 −π/4 −0.785 −0.466
x1 −7π/40 −0.550 −0.165
x2 −π/10 −0.314 −0.031
x3 −π/40 −0.0785 0
x4 π/20 0.157 0.004
x5 π/8 0.393 0.061
x6 π/5 0.628 0.246
x7 11π/40 0.864 0.601
x8 7π/20 1.10 0.971
x9 17π/40 1.34 0.690
x10 π/2 1.57 −0.670

Figure 8.7.3: Table of values used to

approximate
∫ π

2

− π
4

sin(x3) dx in Exam‐

ple 8.7.2.

Example 8.7.2 Approximating definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the Left and Right Hand Rules with 10 equally

spaced subintervals.

SOLUTION We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful towrite out the endpoints of the subintervals in a table; in Figure 8.7.3,
we give the exact values of the endpoints, their decimal approximations, and
decimal approximations of sin(x3) evaluated at these points.

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

Figure 8.7.4: Approximating∫ π
2

− π
4

sin(x3) dx in Example 8.7.2 using

(top) the left hand rule and (bottom) the
right hand rule.

Once this table is created, it is straightforward to approximate the definite
integral using the Left and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeftHand Rule sums the first 10 values
of sin(x3i ) and multiplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and multiplies by∆x. Therefore we have:

Left Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

The average of the Left and Right Hand Rules is 0.4275. The actual answer,
accurate to 3 places after the decimal, is 0.460. Our approximations were once
again fairly good. The rectangles used in each approximation are shown in Fig‐
ure 8.7.4. It is clear from the graphs that using more rectangles (and hence,
narrower rectangles) should result in a more accurate approximation.
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Chapter 8 Techniques of Integration

The Trapezoidal Rule

In Example 8.7.1 we approximated the value of
∫ 1

0
e−x2 dx with 5 rectangles of

equal width. Figure 8.7.2 showed the rectangles used in the Left and Right Hand
Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximations will only come by using
lots of rectangles.

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

Figure 8.7.5: Approximating
∫ 1
0 e−x2 dx

using 5 trapezoids of equal widths.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 8.7.5, we show the region under f(x) = e−x2 on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape‐
zoid lie on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a better
approximation of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap‐

proximation of the area.)

Watch the video:
The Trapezoid Rule for Approximating Integrals at
https://youtu.be/8z6JRFvjkpc

a
b

h

Figure 8.7.6: The area of a trapezoid is
a+b
2 h.

The formula for the area of a trapezoid is given in Figure 8.7.6. We approxi‐
mate

∫ 1
0 e−x2 dx with these trapezoids in the following example.

Example 8.7.3 Approximating definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

SOLUTION To compute the areas of the 5 trapezoids in Figure 8.7.5, it
will again be useful to create a table of values as shown in Figure 8.7.7.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 8.7.7: A table of values of e−x2 .

The leftmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leftmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.
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The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)

+
0.698+ 0.527

2
(0.2) +

0.527+ 0.368
2

(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445.

There are many things to observe in this example. Note how each term in
the final summationwasmultiplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summation as:

1
2
(0.2)

[
(1+ 0.961) + (0.961+ 0.852)+

(0.852+ 0.698) + (0.698+ 0.527) + (0.527+ 0.368)
]
.

Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, where a definite integral
∫ b

a
f(x) dx

is approximated by using trapezoids of equal widths to approximate the corre‐
sponding area under f. Using n equally spaced subintervals with endpoints x0,
x1, …, xn, we again have∆x =

b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi−1) + f(xi)
2

∆x

=
∆x
2

n∑
i=1

(
f(xi−1) + f(xi)

)
=

∆x
2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]
.
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Example 8.7.4 Using the Trapezoidal Rule

Revisit Example 8.7.2 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

SOLUTION Werefer back to Figure 8.7.3 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx

≈ 0.236
2

[
−0.466+ 2

(
−0.165+ (−0.031) + · · ·+ 0.69

)
+ (−0.67)

]
= 0.4275.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta‐
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of xi and f(xi) values. Once this is completed, ap‐
proximating the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computations and make using lots
of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effective‐
ly renders the Left and Right Hand Rules obsolete. They are useful when first
learning about definite integrals, but if a real approximation is needed, one is
generally better off using the Trapezoidal Rule instead of either the Left or Right
Hand Rule.

We will also show that the Trapezoidal Rule makes using the Midpoint Rule
obsolete as well. With much more work, it will turn out that the Midpoint Rule
has only a marginal gain in accuracy. But we will include it in our results for the
sake of completeness.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The Left Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a function f with constant functions
on small subintervals and then computes the definite integral of these constant
functions. The Trapezoidal Rule is really approximating a function fwith a linear
function on a small subinterval, then computes the definite integral of this linear
function. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximating f with a constant func‐
tion and then with a linear function. What is next? A quadratic function. By
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approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp‐
son’s Rule, named after Thomas Simpson (1710–1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule
Given one point, we can create a constant function that goes through that point.
Given two points, we can create a linear function that goes through those points.
Given three points, we can create a quadratic function that goes through those
three points (given that no two have the same x‐value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x‐values are equal‐
ly spaced and x1 < x2 < x3. Let f be the quadratic function that goes through
these three points. An exercise will ask you to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (8.7.1)

1 2 3

1

2

3

x

y

Figure 8.7.8: A graph of a function f and
a parabola that approximates it well on
[1, 3].

Consider Figure 8.7.8. A function f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equation from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximation for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.

Notice how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate f with n/2 parabolic curves, using Equation (8.7.1) to
compute the area under these parabolas. Adding up these areas gives the for‐
mula:∫ b

a
f(x) dx ≈

∆x
3

[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)] .
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Note how the coefficients of the terms in the summation have the pattern 1, 4,
2, 4, 2, 4, …, 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.
xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368

(a)

y = e−x2

0.25 0.5 0.75 1

0.5

1

x

y

(b)

Figure 8.7.9: A table of values to approx‐
imate

∫ 1
0 e−x2 dx in Example 8.7.5, along

with a graph of the function.

Example 8.7.5 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dx using Simpson’s Rule and 4 equally spaced subintervals.

SOLUTION We begin by making a table of values as we have in the past,
as shown in Figure 8.7.9(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 8.7.1 we stated that the correct answer, accurate to 4
places after the decimal, was 0.7468. Our approximation with Simpson’s Rule,
with 4 subintervals, is better than our approximation with the Trapezoidal Rule
using 5.

Figure 8.7.9(b) shows f(x) = e−x2 along with its approximating parabolas,
demonstrating how good our approximation is. The approximating curves are
nearly indistinguishable from the actual function.

xi sin(x3i )

−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

(a)

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

(b)

Figure 8.7.10: A table of values to
approximate

∫ π
2

− π
4
sin(x3) dx in Exam‐

ple 8.7.6, along with a graph of the func‐
tion.

Example 8.7.6 Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter‐

vals.

SOLUTION Figure 8.7.10(a) shows the table of values that we used in
the past for this problem, shown here again for convenience. Again, ∆x =
(π/2+ π/4)/10 ≈ 0.236.

Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + · · ·

· · ·+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap‐
proximation is within 0.01 of the correct value. The graph in Figure 8.7.10(b)
shows how closely the parabolas match the shape of the graph.
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Summary and Error Analysis
We summarize the key concepts of this section thus far in the following Key Idea.

Key Idea 8.7.1 Numerical Integration
Let f be a continuous function on [a, b], let n be a positive integer, and let∆x =

b− a
n

. Set

x0 = a, x1 = a+∆x, …, xi = a+ i∆x, xn = b. Then
∫ b

a
f(x) dx can be approximated by:

Left Hand Rule: ∆x
[
f(x0) + f(x1) + · · ·+ f(xn−1)

]
.

Right Hand Rule: ∆x
[
f(x1) + f(x2) + · · ·+ f(xn)

]
.

Midpoint Rule: ∆x
[
f
( x0+x1

2
)
+ f
( x1+x2

2
)
+ · · ·+ f

( xn−1+xn
2

)]
.

Trapezoidal Rule: ∆x
2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
.

Simpson’s Rule: ∆x
3

[
f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several questions in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximating?

3. If there is value to approximating, how are we supposed to know if the
approximation is any good?

These are good questions, and their answers are educational. In the exam‐
ples, the right answer was never computed. Rather, an approximation accurate
to a certain number of places after the decimal was given. In Example 8.7.1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximations were computed using numerical integration but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximation still has its place.
How are we to tell if the approximation is any good?

“Trial and error” provides one way. Using technology, make an approxima‐
tion with, say, 10, 100, and 200 subintervals. This likely will not take much time
at all, and a trend should emerge. If a trend does not emerge, try using yet more
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subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximationwill be. For instance, the formulamight state that the approxima‐
tion is within 0.1 of the correct answer. If the approximation is 1.58, then one
knows that the correct answer is between 1.48 and 1.68. By using lots of subin‐
tervals, one can get an approximation as accurate as one likes. Theorem 8.7.1
states what these bounds are.

Theorem 8.7.1 Error Bounds in Numerical Integration
Suppose that Km is an upper bound on

∣∣f(m)(x)
∣∣ on [a, b]. Then a bound

for the error of the numerical method of integration is given by:

Method Error Bound

Left/Right Hand Rule
K1(b− a)2

2n

Midpoint Rule
K2(b− a)3

24n2

Trapezoidal Rule
K2(b− a)3

12n2

Simpson’s Rule
K4(b− a)5

180n4

There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu‐
itively.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. When n doubles, the Left and Right Hand Rules double in accuracy, the
Midpoint and Trapezoidal Rules quadruple in accuracy, and Simpson’s Rule
is 16 times more accurate.

4. The error in Simpson’s Rule has a term relating to the 4th derivative of f.
Consider a cubic polynomial: its 4th derivative is 0. Therefore, the error in
approximating the definite integral of a cubic polynomial with Simpson’s
Rule is 0 — Simpson’s Rule computes the exact answer!

We revisit Examples 8.7.3 and 8.7.5 and compute the error bounds using
Theorem 8.7.1 in the following example.
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Example 8.7.7 Computing error bounds

Find the error bounds when approximating
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SOLUTION Trapezoidal Rule with n = 5:
We start by computing the 2nd derivative of f(x) = e−x2 :

y = e−x2 (4x2 − 2)

0.5 1

−2

−1

x

y

Figure 8.7.11: Graphing f ′′(x) in Exam‐
ple 8.7.7 to help establish error bounds.

f ′′(x) = e−x2(4x2 − 2).

Figure 8.7.11 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 8.7.1.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error estimation formula states that our approximation of 0.7445 found
in Example 8.7.3 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 8.7.1.

Simpson’s Rule with n = 4:
We start by computing the 4th derivative of f(x) = e−x2 :

y = e−x2 (16x4 − 48x2 + 12)

0.5 1

−5

5

10

x

y

Figure 8.7.12: Graphing f (4)(x) in Exam‐
ple 8.7.7 to help establish error bounds.

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Figure 8.7.12 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value
of f (4), in absolute value, is 12. Thus we letM = 12 and apply the error formula
from Theorem 8.7.1.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error estimation formula states that our approximationof 0.74683 found
in Example 8.7.5 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 8.7.1.
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We have seen that, for
∫ 1

0
e−x2 dx, Simpson’s Rule with 4 subintervals is far

more accurate than the Trapezoidal Rule with 5 subintervals. We now find how
many intervals we would need to match that accuracy.

Example 8.7.8 Finding a number subintervals

Find the number of subintervals necessary to estimate
∫ 1

0
e−x2 dx to within

0.00026 using the Trapezoidal Rule.

SOLUTION We can again use that f ′′(x) is bounded by 2, so that

ET =
(1− 0)3

12 · n2
· 2 =

1
6n2

.

In order for this to be at most 0.00026, we need to have

n ≥ 1√
6 · 0.00026

≈ 25.3.

Therefore, we will need at least 26 subintervals in order to have as much accu‐
racy as Simpson’s Rule with 4 subintervals.

At the beginning of this section we mentioned two main situations where
numerical integration was desirable. We have considered the case where an
antiderivative of the integrand cannot be computed. We now investigate the
situationwhere the integrand is not known. This is, in fact, themost widely used
application of Numerical Integration methods. “Most of the time” we observe
behavior but do not know “the” function that describes it. We instead collect
data about the behavior and make approximations based off of this data. We
demonstrate this in an example.

Example 8.7.9 Approximating distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 8.7.13.

Time Speed
(min) (mph)

0 0
0.5 25
1 22
1.5 19
2 39
2.5 0
3 43
3.5 59
4 54
4.5 51
5 43
5.5 35
6 40
6.5 43
7 30
7.5 0
8 0
8.5 28
9 40
9.5 42

10 40
10.5 39
11 40
11.5 23
12 0

Figure 8.7.13: Speed data collected at 30
second intervals for Example 8.7.9.

Approximate
the distance they traveled.

SOLUTION Recall that by integrating a speed function we get distance
traveled. We have information about v(t); we will use Simpson’s Rule to approx‐

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converting the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
time is measured in 30 second increments.
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We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at time t = 0, we have that a = 0. The final recorded time came
after 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the read‐
er wants to know, the author’s odometer recorded the distance as about 6.05
miles.)
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Exercises 8.7
Terms and Concepts
1. T/F: Simpson’s Rule is a method of approximating antider‐

ivatives.
2. What are the two basic situationswhere approximating the

value of a definite integral is necessary?
3. Why are the Left and Right Hand Rules rarely used?
4. Why is the Midpoint Rule rarely used?

Problems
In Exercises 5–12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

5.
∫ 1

−1
x2 dx

6.
∫ 10

0
5x dx

7.
∫ π

0
sin x dx

8.
∫ 4

0

√
x dx

9.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

10.
∫ 1

0
x4 dx

11.
∫ 2π

0
cos x dx

12.
∫ 3

−3

√
9− x2 dx

In Exercises 13–20, approximate the definite integral with the
Trapezoidal Rule and Simpson’s Rule, with n = 6.

13.
∫ 1

0
cos
(
x2
)
dx

14.
∫ 1

−1
ex

2
dx

15.
∫ 5

0

√
x2 + 1 dx

16.
∫ π

0
x sin x dx

17.
∫ π/2

0

√
cos x dx

18.
∫ 4

1
ln x dx

19.
∫ 1

−1

1
sin x+ 2

dx

20.
∫ 6

0

1
sin x+ 2

dx

In Exercises 21–24, find n such that the error in approximating
the given definite integral is less than 0.0001 when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21.
∫ π

0
sin x dx

22.
∫ 4

1

1√
x
dx

23.
∫ π

0
cos
(
x2
)
dx

24.
∫ 5

0
x4 dx

In Exercises 25–26, a region is given. Find the area of the re‐
gion using Simpson’s Rule:

(a) where the measurements are in centimeters, taken in 1
cm increments, and

(b) where the measurements are in hundreds of yards, tak‐
en in 100 yd increments.

25. 4.
7

6.
3

6.
9

6.
6

5.
1

26. 3.
6

3.
6

4.
5 6.
6

5.
6

27. Let f be the quadratic function that goes through the points
(x1, y1), (x1 + ∆x, y2) and (x1 + 2∆x, y3). Show that∫ x1+2∆x

x1
f(x) dx = ∆x

3
(y1 + 4y2 + y3).
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9: SEQUENCES AND SERIES

This chapter introduces sequences and series, importantmathematical construc‐
tions that are useful when solving a large variety ofmathematical problems. The
content of this chapter is considerably different from the content of the chap‐
ters before it. While the material we learn here definitely falls under the scope
of “calculus,” we will make very little use of derivatives or integrals. Limits are
extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
information about a function and its derivatives at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximation of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximations
of functions when limited knowledge of the function is available.

9.1 Sequences

We commonly refer to a set of events that occur one after the other as a se‐
quence of events. In mathematics, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one after the other.”

For instance, the numbers 2, 4, 6, 8, . . . , form a sequence. The order is im‐
portant; the first number is 2, the second is 4, etc. It seems natural to seek a for‐
mula that describes a given sequence, and often this can be done. For instance,
the sequence above could be described by the function a(n) = 2n, for the val‐
ues of n = 1, 2, . . . (it could also be described by n4−10n3+35n2−48n+24, to
give one of infinitely many other options). To find the 10th term in the sequence,
we would compute a(10). This leads us to the following, formal definition of a
sequence.

Notes:
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Definition 9.1.1 Sequence
Notation: We use N to describe the
set of natural numbers, that is, the
integers 1, 2, 3, . . .

A sequence is a function a(n) whose domain is N. The range of a se‐
quence is the set of all distinct values of a(n).

The terms of a sequence are the values a(1), a(2), . . . , which are usually
denoted with subscripts as a1, a2, . . . .

A sequence a(n) is often denoted as {an}.

Watch the video:
Sequences — Examples showing convergence or
divergence at
https://youtu.be/9K1xx6wfN-U

Factorial: The expression 3! refers to
the number 3 · 2 · 1 = 6.

In general, n! = n · (n − 1) · (n −
2) · · · 2 · 1, where n is a natural num‐
ber.

We define 0! = 1. While this does
not immediately make sense, it
makes many mathematical formu‐
las work properly.

an =
3n

n!

1 2 3 4

1

2

3

4

5

n

y

(a)

an = 4 + (−1)n

1 2 3 4

1

2

3

4

5

n

y

(b)

an =
(−1)n(n+1)/2

n2

1 2 3 4 5

−1

1/2

1/4

n

y

(c)

Figure 9.1.1: Plotting sequences in Exam‐
ple 9.1.1.

Example 9.1.1 Listing terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+ (−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
SOLUTION

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a scatter plot. The “x”‐axis is
used for the values of n, and the values of the terms are plotted on the
y‐axis. To visualize this sequence, see Figure 9.1.1(a).

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;
a3 = 4+ (−1)3 = 3; a4 = 4+ (−1)4 = 5.
Note that the range of this sequence is finite, consisting of only the values
3 and 5. This sequence is plotted in Figure 9.1.1(b).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;
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a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pattern of signs is “−,−,+,
+,−,−, …”, due to the fact that the exponent of−1 is a special quadratic.
This sequence is plotted in Figure 9.1.1(c).

Example 9.1.2 Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a function that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

SOLUTION We should first note that there is never exactly one function
that describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3 more than the previous one. This implies a linear
function would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First notice how the sign changes from term to term. This is most com‐
monly accomplished bymultiplying the terms by either (−1)n or (−1)n+1.
Using (−1)n multiplies the odd terms by (−1); using (−1)n+1 multiplies
the even terms by (−1). As this sequence has negative even terms, we
will multiply by (−1)n+1.
After this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a pattern of some sort: what do the numbers 2,
5, 10, 17, etc., have in common? There are many correct answers, but
the one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 12 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial function will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shift by
1, and write an = (n− 1)!.
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4. This one may appear difficult, especially as the first two terms are the
same, but a little “sleuthing” will help. Notice how the terms in the nu‐
merator are always multiples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?
When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence.

A common mathematical endeavor is to create a new mathematical object
(for instance, a sequence) and then apply previously knownmathematics to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will investigate what it means to find the limit of a sequence.

Definition 9.1.2 Limit of a Sequence, Convergent, Divergent
Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se‐
quence diverges.

This definition states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjective
terms, but hopefully the intent is clear.

This definition is reminiscent of the ε‐δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definition; we
do so here as well.

Theorem 9.1.1 Limit of a Sequence
Let {an} be a sequence and let f(x) be a functionwhose domain contains
the positive real numbers where f(n) = an for all n in N.

If lim
x→∞

f(x) = L, then lim
n→∞

an = L.
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Theorem 9.1.1 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences (and even if the theorem doesn’t apply, we can
still use ideas from that chapter to prove similar theorems for sequences). Note
two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not exist.
It may, or may not, exist. For instance, we can define a sequence {an} =
{cos(2πn)}. Let f(x) = cos(2πx). Since the cosine function oscillates
over the real numbers, the limit lim

x→∞
f(x) does not exist.

However, for every positive integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a function f(x) whose domain contains the positive real
numbers where f(n) = an for all n inN, we cannot conclude lim

n→∞
an does

not exist. It may, or may not, exist.

Example 9.1.3 Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

an =
3n2 − 2n + 1
n2 − 1000

20 40 60 80 100

−10

−5

5

10

n

y

(a)

20 40 60 80 100

−1

−0.5

0.5

1

n

y
an = cos n

(b)

an =
(−1)n

n

5 10 15 20

−1

−0.5

0.5

1

n

y

(c)

Figure 9.1.2: Scatter plots of the se‐
quences in Example 9.1.3.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}
SOLUTION

1. Using Key Idea 1.5.2, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could
have also directly applied L’Hôpital’s Rule.) Thus the sequence {an} con‐
verges, and its limit is 3. A scatter plot of every 5 values of an is given in
Figure 9.1.2 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist, as cos x oscillates (and takes on every
value in [−1, 1] infinitely many times). This means that we cannot apply
Theorem 9.1.1.
The fact that the cosine function oscillates strongly hints that cos n, when
n is restricted toN, will also oscillate. Figure 9.1.2 (b), where the sequence
is plotted, shows that this is true. Because only discrete values of cosine
are plotted, it does not bear strong resemblance to the familiar cosine
wave.
Based on the graph, we suspect that lim

n→∞
an does not exist, but we have

not decisively proven it yet.
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3. We cannot actually apply Theorem 9.1.1 here, as the function f(x) =

(−1)x/x is not well defined. (What does (−1)
√
2 mean? In actuality, there

is an answer, but it involves complex analysis, beyond the scope of this
text.) So for now we say that we cannot determine the limit. (But we will
be able to very soon.) By looking at the plot in Figure 9.1.2 (c), we would
like to conclude that the sequence converges to 0. That is true, but at this
point we are unable to decisively say so.

It seems that {(−1)n/n} converges to 0 but we lack the formal tool to prove
it. The following theorem gives us that tool.

Theorem 9.1.2 Absolute Value Theorem
Let {an} be a sequence. If lim

n→∞
|an| = 0, then lim

n→∞
an = 0

Proof
We know − |an| ≤ an ≤ |an| and lim

n→∞
(− |an|) = − lim

n→∞
|an| = 0. Thus by the

Squeeze Theorem, lim
n→∞

an = 0. □

Example 9.1.4 Determining the convergence / divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
SOLUTION

1. This appeared in Example 9.1.3. We want to apply Theorem 9.1.2, so con‐
sider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 9.1.2 and state that lim
n→∞

an =
0.
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2. Because of the alternating nature of this sequence (i.e., every other term

ismultiplied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 9.1.2:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

an =
(−1)n(n + 1)

n

5 10 15 20
−1

−2

1

2

n

y

Figure 9.1.3: A plot of a sequence in Ex‐
ample 9.1.4, part 2.

Wehave concluded that whenwe ignore the sign, the sequence approach‐
es 1. This means we cannot apply Theorem 9.1.2; it states the the limit
must be 0 in order to conclude anything.
Since we know that the signs of the terms alternate and we know that
the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 9.1.3.

We continue our study of the limits of sequences by considering some of the
properties of these limits.

Theorem 9.1.3 Properties of the Limits of Sequences
Let {an} and {bn} be sequences such that lim

n→∞
an = L and lim

n→∞
bn = K,

where L and K are real numbers, and let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

(c · an) = c · L

Example 9.1.5 Applying properties of limits of sequences
Let the following limits be given:

• lim
n→∞

an = 0;

• lim
n→∞

bn = e; and

• lim
n→∞

cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)
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SOLUTION We will use Theorem 9.1.3 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
matter that wemultiply each term by 1000; the sequence still approaches
0. (It just takes longer to get close to 0.)

Definition 9.1.3 Geometric Sequence
For a constant r, the sequence {rn} is known as a geometric sequence.

Theorem 9.1.4 Convergence of Geometric Sequences
The sequence {rn} is convergent if −1 < r ≤ 1 and divergent for all
other values of r. Furthermore,

lim
n→∞

rn =

{
0 −1 < r < 1
1 r = 1

Proof
We can see from Key Idea 7.3.1 and by letting a = r that

lim
n→∞

rn =

{
∞ r > 1
0 0 < r < 1.

We also know that lim
x→∞

1n = 1 and lim
x→∞

0n = 0. If −1 < r < 0, we know
0 < |r| < 1 so lim

x→∞
|rn| = lim

x→∞
|r|n = 0 and thus by Theorem 9.1.2, lim

x→∞
rn = 0.

If r ≤ −1, lim
x→∞

rn does not exist. Therefore, the sequence {rn} is convergent if
−1 < r ≤ 1 and divergent for all other values of r. □

There is more to learn about sequences than just their limits. We will also
study their range and the relationships terms have with the terms that follow.
We start with some definitions describing properties of the range.
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Definition 9.1.4 Bounded and Unbounded Sequences
A sequence {an} is said to be bounded if there exist real numbersm and
M such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists anM such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definition that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 9.1.6 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

an =
1
n

1 2 3 4 5 6 7 8 9 10

1

1/2

1/4
1/10

n

y

(a)

an = 2n

2 4 6 8

100

200

n

y

(b)

Figure 9.1.4: A plot of {an} = {1/n}
and {an} = {2n} from Example 9.1.6.

SOLUTION

1. The terms of this sequence are always positive but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 9.1.4(a)
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it is
also true that these terms are all positive, meaning 0 < an. Thus we can
say the sequence is unbounded, but also bounded below. Figure 9.1.4(b)
illustrates this.

The previous example produces some interesting concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using Definition 9.1.2, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic suggests that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.
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Theorem 9.1.5 Convergent Sequences are Bounded
Let {an} be a convergent sequence. Then {an} is bounded.

Note: Keep in mind what Theo‐
rem 9.1.5 does not say. It does not
say that bounded sequences must
converge, nor does it say that if a se‐
quence does not converge, it is not
bounded.

In Example 7.5.3 part 1, we found that lim
x→∞

(1 + 1/x)x = e. If we consider
the sequence {bn} = {(1 + 1/n)n}, we see that lim

n→∞
bn = e. Even though

it may be difficult to intuitively grasp the behavior of this sequence, we know
immediately that it is bounded.

Another interesting concept to come out of Example 9.1.6 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Definition 9.1.5 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ an+1 · · ·

2. A sequence {an} ismonotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 · · ·

3. A sequence is monotonic if it is monotonically increasing or mo‐
notonically decreasing.

Note: It is sometimes useful to call a
monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.

A similar statement holds for strictly
decreasing.

Example 9.1.7 Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}
SOLUTION In each of the following, wewill examine an+1−an. If an+1−

an ≥ 0, we conclude that an ≤ an+1 and hence the sequence is increasing. If
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an+1 − an ≤ 0, we conclude that an ≥ an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scatter plot of each sequence. These are useful as they sug‐
gest a pattern of monotonicity, but analytic work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

an =
n + 1
n

5 10

1

2

n

y

Figure 9.1.5: A plot of {an} = { n+1
n } in

Example 9.1.7(a).

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

2.

an =
n2 + 1
n + 1

5 10

5

10

n

y

Figure 9.1.6: A plot of {an} = { n2+1
n+1 } in

Example 9.1.7(b).

an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n(n+ 3)

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is increasing.

3.

an =
n2 − 9

n2 − 10n + 26

5 10

5

10

15

n

y

Figure 9.1.7: A plot of {an} =

{ n2−9
n2−10n+26} in Example 9.1.7(c).

We can clearly see in Figure 9.1.7, where the sequence is plotted, that
it is not monotonic. However, it does seem that after the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The denomi‐
nator is always positive, therefore we are only concerned with the numer‐
ator. Using the quadratic formula, we can determine that−10n2 + 60n−

Notes:

471



Chapter 9 Sequences and Series

55 = 0 when n ≈ 1.13, 4.87. So for n < 1.13, the sequence is decreas‐
ing. Since we are only dealing with the natural numbers, this means that
a1 > a2.
Between 1.13 and 4.87, i.e., for n = 2, 3 and 4, we have that an+1 >
an and the sequence is increasing. (That is, when n = 2, 3 and 4, the
numerator−10n2 + 60n− 55 from the fraction above is> 0.)
When n > 4.87, i.e, for n ≥ 5, we have that−10n2+60n−55 < 0, hence
an+1 − an < 0, so the sequence is decreasing.
In short, the sequence is simply not monotonic. However, it is useful to
note that for n ≥ 5, the sequence is monotonically decreasing.

4.

an =
n2

n!

5 10

0.5

1

1.5

2

n

y

Figure 9.1.8: A plot of {an} = {n2/n!} in
Example 9.1.7(d).

Again, the plot in Figure 9.1.8 shows that the sequence is not monoton‐
ic, but it suggests that it is monotonically decreasing after the first term.
Instead of looking at an+1 − an, this time we’ll look at an/an+1:

an
an+1

=
n2

n!
(n+ 1)!
(n+ 1)2

=
n2

n+ 1

= n− 1+
1

n+ 1

When n = 1, the above expression is < 1; for n ≥ 2, the above expres‐
sion is > 1. Thus this sequence is not monotonic, but it is monotonically
decreasing after the first term.

Knowing that a sequence is monotonic can be useful. In particular, if we
know that a sequence is bounded andmonotonic, we can conclude it converges.
Consider, for example, a sequence that ismonotonically decreasing and is bound‐
ed below. We know the sequence is always getting smaller, but that there is a
bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

Theorem 9.1.6 Bounded Monotonic Sequences are Convergent
Let {an} be a bounded, monotonic sequence. Then {an} converges; i.e.,
lim

n→∞
an exists.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always positive (i.e., bounded below by
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0). Therefore we can conclude by Theorem 9.1.6 that the sequence converges.
We already knew this by other means, but in the following section this theorem
will become very useful.

Convergence of a sequence does not depend on the first N terms of a se‐
quence. For example, we could adapt the sequence of the previous paragraph
to be

1, 10, 100, 1000,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,

1
10

, . . .

Because we only changed three of the first 4 terms, we have not affected wheth‐
er the sequence converges or diverges.

Sequences are a great source of mathematical inquiry. The On‐Line Ency‐
clopedia of Integer Sequences (http://oeis.org) contains thousands of se‐
quences and their formulae. (As of this writing, there are 348,000 sequences
in the database.) Perusing this database quickly demonstrates that a single se‐
quence can represent several different “real life” phenomena.

Interesting as this is, our interest actually lies elsewhere. We are more in‐
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · · . Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many times, yes, but there are many im‐
portant cases where the answer is no. This is the topic of series, which we begin
to investigate in the next section.
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Exercises 9.1
Terms and Concepts
1. Use your own words to define a sequence.
2. The domain of a sequence is the numbers.
3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5–8, give the first five terms of the given sequence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3
2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9–12, determine the nth term of the given se‐
quence.

9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1, 1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13–16, use the following information to determine
the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+ 2

n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {dn} =

{
2n − 20
7 · 2n

}
14. {dn} = {3bn − an}

15. {dn} =

{
sin(3/n)

(
1+ 2

n

)n}
16. {dn} =

{(
1+ 2

n

)2n
}

In Exercises 17–38, determine whether the sequence con‐
verges or diverges. If convergent, give the limit of the se‐
quence.

17. {an} =

{
(−1)n n

n+ 1

}
18. {an} =

{
4n2 − n+ 5
3n2 + 1

}

19. {an} =

{
4n

5n

}
20. {an} =

{
(n− 3)!
(n+ 1)!

}
21. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

22. {an} =

{
6n+3

8n

}
23. {an} = {ln(n)}

24. {an} =

{
3n√
n2 + 1

}
25. {an} =

{(
1+ 1

n

)n}
26. {an} =

{
(2n+ 1)!
(2n− 1)!

}
27. {an} =

{
5− 1

n

}
28. {an} =

{
(−1)n+1

n

}
29. {an} =

{
1.1n

n

}
30. {an} =

{
2n

n+ 1

}
31. {an} =

{
(−1)n n2

2n − 1

}
32. {an} =

{
2+ 9n

8n

}
33. {an} =

{
(n− 1)!
(n+ 1)!

}
34. {an} = {ln(3n+ 2)− ln n}

35. {an} = {ln(2n2 + 3n+ 1)− ln(n2 + 1)}

36. {an} =

{
n sin

(
1
n

)}
37. {an} =

{
en + e−n

e2n − 1

}
38. {an} =

{
ln n
ln 2n

}
In Exercises 39–42, determine whether the sequence is bound‐
ed, bounded above, bounded below, or none of the above.

39. {an} = {sin n}

40. {an} =

{
(−1)n 3n− 1

n

}
41. {an} =

{
3n2 − 1

n

}
42. {an} = {2n − n!}
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In Exercises 43–48, determinewhether the sequence is monot‐
onically increasing or decreasing. If it is not, determine if there
is anm such that it is monotonic for all n ≥ m.

43. {an} =

{
n

n+ 2

}
44. {an} =

{
n2 − 6n+ 9

n

}
45. {an} =

{
(−1)n 1

n3

}
46. {an} =

{
n2

2n

}
47. {an} =

{
cos
(
nπ
2

)}
48. {an} = {ne−n}

49. Prove Theorem 9.1.2; that is, use the definition of the
limit of a sequence to show that if lim

n→∞
|an| = 0, then

lim
n→∞

an = 0.

50. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.
(b) Give an example where an < bn for all n but L = K.

51. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

52. In this section, we have focused on sequences defined by
a formula, an = f(n). Another common way to define a
sequence is by a recurrence relation, an equation that re‐
lates an to previous terms in the sequence. For example,
let an = ran−1 for n = 1, 2, 3, . . . , with the initial condi‐
tion a0 = A. (Starting the sequence with n = 0 is common
for recurrence relations.)
(a) Write out the first few terms of the above sequence,

and find a pattern that lets you define an by a func‐
tion f(n) that does not explicitly include prior terms
of the sequence.

(b) Many recurrence relations yield sequences whose
terms cannot be expressed by a simple function f(n),
and in fact such sequences can exhibit very unusual
behavior. Read the Wikipedia article on the Logistic
Map for a simple example that can exhibit a wide va‐
riety of behavior. (There is nothing to turn in for this
part, unless your instructor gives you further direc‐
tions.)

53. Define a sequence {an} by a1 = 1 and an =
√
2+ an−1

for all n > 1. So a1 = 1, a2 =
√
3, a3 =

√
2+

√
3,

a3 =
√

2+
√

2+
√
3,….

(a) Show that an < 2 for all n ≥ 1.
(b) Show that {an} is increasing.
(c) Conclude that {an} converges.
(d) Determine the limit of {an}.
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Chapter 9 Sequences and Series

9.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . . , consider the follow‐
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

Later, we will be able to show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, and that Sn = 1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1− 1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interesting concepts that we explore in this
section. We begin this exploration with some definitions.

Definition 9.2.1 Infinite Series, nth Partial Sums, Convergence, Divergence
Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =
n∑

i=1
ai ; the sequence {Sn} is the sequence of nth partial sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an converges to L,

and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

Notes:
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9.2 Infinite Series

and
∞∑
n=1

1/2n = 1.

Watch the video:
Finding a Formula for a Partial Sum of a Telescop‐
ing Series at
https://youtu.be/cyoiIBs7kIg

We will explore a variety of series in this section. We start with two series
that diverge, showing how we might discern divergence.

Example 9.2.1 Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

SOLUTION

1. Consider Sn, the nth partial sum.

5 10

100

200

300

n

y

an Sn

Figure 9.2.1: Scatter plots relating to the
series of Example 9.2.1 part 1.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2

=
n(n+ 1)(2n+ 1)

6
. by Theorem 5.3.1

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instructive to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges: it

grows without bound.
A scatter plot of the sequences {an} and {Sn} is given in Figure 9.2.1. The
terms of {an} are growing, so the terms of the partial sums {Sn} are grow‐
ing even faster, illustrating that the series diverges.

Notes:
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Chapter 9 Sequences and Series

2. The sequence {bn} starts with 1,−1, 1,−1, . . . . Consider some of the
partial sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This pattern repeats; we find that Sn =

{
1 n is odd
0 n is even.

As {Sn} oscillates,

repeating 1, 0, 1, 0, . . . , we conclude that lim
n→∞

Sn does not exist, hence
∞∑
n=1

(−1)n+1 diverges.

5 10

−1

−0.5

0.5

1

n

y

bn Sn

Figure 9.2.2: Scatter plots relating to the
series of Example 9.2.1 part 2.

A scatter plot of the sequence {bn} and the partial sums {Sn} is given
in Figure 9.2.2. When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this section we will demonstrate
a few general techniques for determining convergence; later sections will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

Definition 9.2.2 Geometric Series
A geometric series is a series of the form

∞∑
n=0

arn = a+ ar+ ar2 + ar3 + · · ·+ arn + · · ·

Note that the index starts at n = 0. If the index starts at n = 1 we have
∞∑
n=1

arn−1.

Notes:
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9.2 Infinite Series

We started this section with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properties.

Theorem 9.2.1 Convergence of Geometric Series

Consider the geometric series
∞∑
n=0

arn where a ̸= 0.

1. If r ̸= 1, the nth partial sum is: Sn =
n−1∑
k=0

ark =
a(1− r n)
1− r

.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

arn =
a

1− r
.

Proof
If r = 1, then Sn = a+a+a+· · ·+a = na. Since lim

n→∞
Sn = ±∞, the geometric

series diverges.
If r ̸= 1, we have

Sn = a+ ar+ ar2 + · · ·+ arn−1.

Multiply each term by r and we have

rSn = ar+ ar2 + ar3 · · ·+ arn.

Subtract these two equations and solve for Sn.

Sn − rSn = a− arn

Sn =
a(1− rn)
1− r

From Theorem 9.1.4, we know that if−1 < r < 1, then lim
n→∞

rn = 0 so

lim
n→∞

Sn = lim
n→∞

=
a(1− rn)
1− r

=
a

1− r
− a

1− r
lim

n→∞
rn =

a
1− r

.

So when |r| < 1 the geometric series converges and its sum is
a

1− r
.

If either r ≤ −1 or r > 1, the sequence {rn} is divergent by Theorem 9.1.4.
Thus lim

n→∞
Sn does not exist, so the geometric series diverges if r ≤ −1 or r > 1.

□

Notes:
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Chapter 9 Sequences and Series

According to Theorem 9.2.1, the series
∞∑
n=0

1
2n

=
∞∑
n=0

(
1
2

)n

= 1+
1
2
+

1
4
+ · · ·

converges as r = 1/2, and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our intro‐

ductory example; while there we got a sum of 1, we skipped the first term of
1.

2 4 6 8 10

1

2

n

y

an Sn

(a)

2 4 6 8 10

−1

−0.5

0.5

1

n

y

an Sn

(b)

2 4 6

500

1,000

n

y

an Sn

(c)

Figure 9.2.3: Scatter plots relating to the
series in Example 9.2.2.

Example 9.2.2 Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

SOLUTION

1. Since r = 3/4 < 1, this series converges. By Theorem 9.2.1, we have that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summation in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 9.2.3(a).

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 9.2.1,

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The partial sums of this series are plotted in Figure 9.2.3(b). Note how
the partial sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are negative.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·

to diverge.) This is illustrated in Figure 9.2.3(c).

Notes:
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9.2 Infinite Series

Later sections will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 9.2.3 Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

SOLUTION It will help to write down some of the first few partial sums
of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

2 4 6 8 10

0.5

1

n

y

an Sn

Figure 9.2.4: Scatter plots relating to the
series of Example 9.2.3.

Note howmost of the terms in each partial sum subtract out. In general, we see
that Sn = 1− 1

n+1 . This means that the sequence {Sn} converges, as

lim
n→∞

Sn = lim
n→∞

(
1− 1

n+1

)
= 1,

and so we conclude that
∞∑
n=1

(
1
n −

1
n+1

)
= 1. Partial sums of the series are

plotted in Figure 9.2.4.

The series in Example 9.2.3 is an example of a telescoping series. Informally,
a telescoping series is one inwhich the partial sums reduce to just a fixed number
of terms. The partial sum Sn did not contain n terms, but rather just two: 1 and
1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth partial sum
Sn. This makes evaluating the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

Notes:
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Chapter 9 Sequences and Series

Example 9.2.4 Evaluating series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)
SOLUTION

1. We can decompose the fraction 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See Section 8.4, Partial FractionDecomposition, to recall how this is done,
if necessary.)
Expressing the terms of {Sn} is now more instructive:

S1 = 1− 1
3 = 1− 1

3

S2 = (1− 1
3 ) + ( 12 −

1
4 ) = 1+ 1

2 −
1
3 −

1
4

S3 = (1− 1
3 ) + ( 12 −

1
4 ) + ( 13 −

1
5 ) = 1+ 1

2 −
1
4 −

1
5

S4 = (1− 1
3 ) + ( 12 −

1
4 ) + ( 13 −

1
5 ) + ( 14 −

1
6 ) = 1+ 1

2 −
1
5 −

1
6

S5 = (1− 1
3 ) + ( 12 −

1
4 ) + ( 13 −

1
5 ) + ( 14 −

1
6 ) + ( 15 −

1
7 ) = 1+ 1

2 −
1
6 −

1
7

2 4 6 8 10

0.5

1

1.5

n

y

an Sn

Figure 9.2.5: Scatter plots relating to the
series of Example 9.2.4 part 1.

We again have a telescoping series. In each partial sum, most of the terms
pair up to add to zero and we obtain the formula Sn = 1+

1
2
− 1

n+ 1
−

1
n+ 2

. Taking limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
,

so
∞∑
n=1

1
n2 + 2n

=
3
2
. This is illustrated in Figure 9.2.5.

2. We begin by writing the first few partial sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)

Notes:
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9.2 Infinite Series

At first, this does not seem helpful, but recall the logarithmic identity:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We must generalize this for Sn.

Sn = ln (2) + ln
(
3
2

)
+ · · ·+ ln

(
n+ 1
n

)
= ln

(
2
1
· 3
2
. . .

n
n− 1

· n+ 1
n

)
= ln(n+ 1)

50 100

2

4

n

y

an Sn

Figure 9.2.6: Scatter plots relating to the
series of Example 9.2.4 part 2.

We can conclude that {Sn} =
{
ln(n + 1)

}
. This sequence does not con‐

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di‐

verges. Note in Figure 9.2.6 how the sequence of partial sums grows slow‐
ly; after 100 terms, it is not yet over 5. Graphically we may be fooled into
thinking the series converges, but our analysis above shows that it does
not.

We are learning about a new mathematical object, the series. As done be‐
fore, we apply “old” mathematics to this new topic.

Theorem 9.2.2 Properties of Infinite Series

Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are convergent series, and that

∞∑
n=1

an = L,
∞∑
n=1

bn = K, and c is a constant.

1. Constant Multiple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we will consider the harmonic series
∞∑
n=1

1
n
.

Notes:
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Chapter 9 Sequences and Series

Example 9.2.5 Divergence of the Harmonic Series

Show that the harmonic series
∞∑
n=1

1
n
diverges.

SOLUTION We will use a proof by contradiction here. Suppose the har‐
monic series converges to S. That is

S = 1+
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ · · ·

We then have

S ≥ 1+
1
2
+

1
4
+

1
4
+

1
6
+

1
6
+

1
8
+

1
8
+ · · ·

= 1+
1
2
+

1
2

+
1
3

+
1
4

+ · · ·

=
1
2
+ S

This gives us S ≥ 1
2 + S which can never be true, thus our assumption that

the harmonic series converges must be false. Therefore, the harmonic series
diverges.

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
section, yet it still may “take some getting used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will still diverge if the first term is removed.
(b) The series will still diverge if the first 10 terms are removed.
(c) The series will still diverge if the first 1,000,000 terms are removed.
(d) The series will still diverge if any finite number of terms from any‐

where in the series are removed.

These concepts are very important and lie at the heart of the next two theo‐
rems.

Notes:
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Theorem 9.2.3 Convergence of Sequence

If the series
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof
Let Sn = a1 + a2 + · · ·+ an. We have

Sn = a1 + a2 + · · ·+ an−1 + an
Sn = Sn−1 + an
an = Sn − Sn−1

Since
∑
n→∞

an converges, the sequence {Sn} converges. Let lim
n→∞

Sn = S. As

n → ∞, n− 1 also goes to∞, so lim
n→∞

Sn−1 = S. We now have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1)

= lim
n→∞

Sn − lim
n→∞

Sn−1

= S− S = 0 □

Theorem 9.2.4 Test for Divergence

If lim
n→∞

an does not exist or lim
n→∞

an ̸= 0, then the series
∞∑
n=1

an diverges.

The Test for Divergence follows from Theorem 9.2.3. If the series does not
diverge, it must converge and therefore lim

n→∞
an = 0.

Note that the two statements in Theorems 9.2.3 and 9.2.4 are really the
same. In order to converge, the terms of the sequence must approach 0; if they
do not, the series will not converge.

Looking back, we can apply this theorem to the series in Example 9.2.1. In
that example, we had {an} = {n2} and {bn} = {(−1)n+1}.

lim
n→∞

an = lim
n→∞

n2 = ∞

and
lim

n→∞
bn = lim

n→∞
(−1)n+1 which does not exist.

Notes:
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Thus by the Test for Divergence, both series will diverge.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Ex‐
ample 9.2.5. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic

Series,
∞∑
n=1

1/n, diverges.

Theorem 9.2.5 Infinite Nature of Series
The convergence or divergence of a series remains unchanged by the
insertion or deletion of any finite number of terms. That is:

1. A divergent series will remain divergent with the insertion or dele‐
tion of any finite number of terms.

2. A convergent series will remain convergent with the insertion or
deletion of any finite number of terms. (Of course, the sum will
likely change.)

In other words, when we are only interested in the convergence or diver‐
gence of a series, it is safe to ignore the first few billion terms.

Example 9.2.6 Removing Terms from the Harmonic Series

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the par‐

tial sums SN =

N∑
n=1

1
n
grow (very, very slowly) without bound. One might think

that by removing the “large” terms of the sequence that perhaps the series will
converge. This is simply not the case. For instance, the sum of the first 10 mil‐
lion terms of the Harmonic Series is about 16.7. Removing the first 10 million
terms from the Harmonic Series changes the partial sums, effectively subtract‐
ing 16.7 from the sum. However, a sequence that is growing without bound will
still grow without bound when 16.7 is subtracted from it.

The equation below illustrates this. Even though we have subtracted off the
first 10 million terms, this only subtracts a constant off of an expression that is
still growing to infinity. Therefore, the modified series is still growing to infinity.

∞∑
n=10,000,001

1
n
= lim

N→∞

N∑
n=10,000,001

1
n
= lim

N→∞

N∑
n=1

1
n
−

10,000,001∑
n=1

1
n

= lim
N→∞

N∑
n=1

1
n
− 16.7 = ∞.
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9.2 Infinite Series

This section introduced us to series and defined a few special types of series
whose convergence properties are well known. We know when a geometric se‐
ries converges or diverges. Most series that we encounter are not one of these
types, but we are still interested in knowing whether or not they converge. The
next three sections introduce tests that help us determine whether or not a giv‐
en series converges.

Notes:
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Exercises 9.2
Terms and Concepts
1. Use your ownwords to describe how sequences and series

are related.
2. Use your own words to define a partial sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.
4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

Problems

In Exercises 7–14, a series
∞∑
n=1

an is given.

(a) Give the first 5 partial sums of the series.
(b) Give a graph of the first 5 terms of an and Sn on the same

axes.

7.
∞∑
n=1

(−1)n

n

8.
∞∑
n=1

1
n2

9.
∞∑
n=1

cos(πn)

10.
∞∑
n=1

n

11.
∞∑
n=1

1
n!

12.
∞∑
n=1

1
3n

13.
∞∑
n=1

(
− 9
10

)n

14.
∞∑
n=1

(
1
10

)n

In Exercises 15–32, state whether the given series converges
or diverges and provide justification for your conclusion.

15.
∞∑
n=0

1
5n

16.
∞∑
n=1

3n2

n(n+ 2)

17.
∞∑
n=0

6n

5n

18.
∞∑
n=1

2n

n2

19.
∞∑
n=1

√
n

20.
∞∑
n=0

(ln(4n+ 2)− ln(7n+ 5))

21.
∞∑
n=1

5n − n5

5n + n5

22.
∞∑
n=1

(
1
n!

+
1
n

)

23.
∞∑
n=1

1
2n

24.
∞∑
n=1

2n + 1
2n+1

25.
∞∑
n=1

1
2n− 1

26.
∞∑
n=1

n√3

27.
∞∑
n=1

(
1+ 1

n

)n

28.
∞∑
n=1

πn

3n+1

29.
∞∑
n=1

3n + 2n

6n

30.
∞∑
n=1

4n + 2n

6n

31.
∞∑
n=1

4n + 5n

6n

32.
∞∑
n=1

(
3

n(n+ 1)
+

5
4n

)
In Exercises 33–48, a series is given.

(a) Find a formula for Sn, the nth partial sum of the series.

(b) Determine whether the series converges or diverges. If
it converges, state what it converges to.

33.
∞∑
n=0

1
4n

34. 13 + 23 + 33 + 43 + · · ·

35.
∞∑
n=1

(−1)nn

36.
∞∑
n=0

5
2n
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37.
∞∑
n=1

e−n

38. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

39.
∞∑
n=1

1
n(n+ 1)

40.
∞∑
n=1

3
n(n+ 2)

41.
∞∑
n=1

1
(2n− 1)(2n+ 1)

42.
∞∑
n=1

ln
(

n
n+ 1

)

43.
∞∑
n=1

2n+ 1
n2(n+ 1)2

44. 1
1 · 4 +

1
2 · 5 +

1
3 · 6 +

1
4 · 7 + · · ·

45. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

46.
∞∑
n=2

1
n2 − 1

47.
∞∑
n=0

(
sin 1

)n
48.

∞∑
n=1

(
2

n(n+ 2)
+

5
4n

)
In Exercises 49–52, find the values of x for which the series con‐
verges.

49.
∞∑
n=1

xn

3n

50.
∞∑
n=1

(x+ 3)n

2n

51.
∞∑
n=1

4n

xn

52.
∞∑
n=1

(x+ 2)n

In Exercises 53–58, use Theorem 9.2.4 to show the given series
diverges.

53.
∞∑
n=1

3n2

n(n+ 2)

54.
∞∑
n=1

2n

n2

55.
∞∑
n=1

n!
10n

56.
∞∑
n=1

5n − n5

5n + n5

57.
∞∑
n=1

2n + 1
2n+1

58.
∞∑
n=1

(
1+ 1

n

)n

59. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.

60. Rewrite 0.121212 . . . as an infinite series and then express
the sum as the quotient of two integers (thus showing that
it is a rational number — this method can be generalized
to show that every repeating decimal is rational).

61. A ball falling from a height of hmeters is known to rebound
to a height of rh meters, where the proportionality con‐
stant r satisfies 0 < r < 1. Find the total distance traveled
(vertically) by the ball if it is dropped initially from a height
of 2 meters.
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Chapter 9 Sequences and Series

9.3 The Integral Test
Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 9.8. Theorem 9.2.1 gives criteria for when
Geometric series converge and Theorem 9.2.4 gives a quick test to determine if
a series diverges. There are many important series whose convergence cannot
be determined by these theorems, though, so we introduce a set of tests that
allow us to handle a broad range of series. We start with the Integral Test.

Integral Test
We stated in Section 9.1 that a sequence {an} is a function a(n) whose domain
is N, the set of natural numbers. If we can extend a(n) to have the domain of
R, the real numbers, and it is both positive and decreasing on [1,∞), then the

convergence of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

Theorem 9.3.1 Integral Test
Let a sequence {an} be defined by an = a(n), where a(n) is continuous,

positive, and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only

if,
∫ ∞

1
a(x) dx converges. In other words:

1. If
∫ ∞

1
a(x) dx is convergent, then

∞∑
n=1

an is convergent.

2. If
∫ ∞

1
a(x) dx is divergent, then

∞∑
n=1

an is divergent.

Note: Theorem 9.3.1 does not state
that the integral and the summation
have the same value.

Note that it is not necessary to start the series or the integral at n = 1. We
may use any interval [n,∞) on which a(n) is continuous, positive and decreas‐
ing. Also the sequence {an} does not have to be strictly decreasing. It must
be ultimately decreasing which means it is decreasing for all n larger than some
number N.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 9.3.1(a), the height of each rectangle is a(n) = an for n = 1, 2, . . . ,

Notes:
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9.3 The Integral Test

and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (9.3.1)

1 2 3 4 5

1

2
y = a(x)

x

y

(a)

1 2 3 4 5

1

2
y = a(x)

x

y

(b)

Figure 9.3.1: Illustrating the truth of the
Integral Test.

In Figure 9.3.1(b), we draw rectangles under y = a(x) with the Right‐Hand rule,
starting with n = 2. This time, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <
∫ ∞

1
a(x) dx. Note how this summation starts with

n = 2; adding a1 to both sides lets us rewrite the summation startingwith n = 1:
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (9.3.2)

Combining Equations (9.3.1) and (9.3.2), we have
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (9.3.3)

From Equation (9.3.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x) dx

(because
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx)

2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x) dx

(because
∫ ∞

1
a(x) dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theo‐
rem 9.2.5 allows us to extend this theorem to series where a(n) is positive and
decreasing on [b,∞) for some b > 1.

Watch the video:
Integral Test for Series: Why It Works at
https://youtu.be/ObiRjUFHJHo

Notes:
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Chapter 9 Sequences and Series

Example 9.3.1 Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{(ln n)/n2} and the nth partial sums are given in Figure 9.3.2.)

SOLUTION Figure 9.3.2

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

n

y

an Sn

Figure 9.3.2: Plotting the sequence and
series in Example 9.3.1.

implies that a(n) = (ln n)/n2 is positive and
decreasing on [2,∞). We can determine this analytically, too. We know a(n)
is positive as both ln n and n2 are positive on [2,∞). To determine that a(n) is
decreasing, consider a′(n) = (1− 2 ln n)/n3, which is negative for n ≥ 2. Since
a′(n) is negative, a(n) is decreasing.

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln x
x2

dx. Integrat‐

ing this improper integral requires the use of Integration by Parts, with u = ln x
and dv = 1/x2 dx.∫ ∞

1

ln x
x2

dx = lim
t→∞

∫ t

1

ln x
x2

dx

= lim
t→∞

(
−1
x
ln x
∣∣∣t
1
+

∫ t

1

1
x2

dx
)

= lim
t→∞

([
−1
x
ln x− 1

x

]t
1

)
= lim

t→∞

(
1− 1

t
− ln t

t

)
. Apply L’Hôpital’s Rule:

= 1− 0− lim
t→∞

1
t

= 1

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

p‐Series

Another important type of series is the p‐series.

Notes:
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9.3 The Integral Test

Definition 9.3.1 p‐Series, General p‐Series

1. A p‐series is a series of the form
∞∑
n=1

1
np

.

2. A general p‐series is a series of the form
∞∑
n=1

1
(an+ b)p

,

where a > 0, b is a real number, and an+ b ̸= 0 for all n.

Like geometric series, one of the nice things about p‐series is that they have
easy to determine convergence properties.

Theorem 9.3.2 Convergence of General p‐Series
Assume a and b are real numbers and an+ b ̸= 0 for all n.

A general p‐series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.

Proof
Consider the integral

∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
t→∞

∫ t

1

1
(ax+ b)p

dx

= lim
t→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣t
1

= lim
t→∞

1
a(1− p)

(
(at+ b)1−p − (a+ b)1−p).

This limit converges if and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 8.6.1.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. □

Notes:
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Chapter 9 Sequences and Series

Example 9.3.2 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=11

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

SOLUTION

1. This is a p‐series with p = 1. By Theorem 9.3.2, this series diverges.
This series is a famous series, called the Harmonic Series, so named be‐
cause of its relationship to harmonics in the study of music and sound.

2. This is a p‐series with p = 2. By Theorem 9.3.2, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to π2/6.

3. This is a p‐series with p = 1/2; the theorem states that it diverges.

4. This is not a p‐series; the definition does not allow for alternating signs.
Therefore we cannot apply Theorem 9.3.2. We will consider this series
again in Section 9.5. (Another famous result states that this series, the
Alternating Harmonic Series, converges to− ln 2.)

5. This is a general p‐series with p = 3, therefore it converges.

6. This is not a p‐series, but a geometric series with r = 1/2. It converges.

In the next section we consider two more convergence tests, both compari‐
son tests. That is, we determine the convergence of one series by comparing it
to another series with known convergence.

Notes:
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Exercises 9.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

function a(n) = an must be , and .
2. T/F: The Integral Test can be used to determine the sum of

a convergent series.

Problems
In Exercises 3–10, use the Integral Test to determine the con‐
vergence of the given series.

3.
∞∑
n=1

1
2n

4.
∞∑
n=1

1
n4

5.
∞∑
n=1

n
n2 + 1

6.
∞∑
n=2

1
n ln n

7.
∞∑
n=1

1
n2 + 1

8.
∞∑
n=2

1
n(ln n)2

9.
∞∑
n=1

n
2n

10.
∞∑
n=1

ln n
n3

In Exercises 11–14, find the value(s) of p for which the series is
convergent.

11.
∞∑
n=2

1
n(ln n)p

12.
∞∑
n=1

n(1+ n2)p

13.
∞∑
n=1

ln n
np

14.
∞∑
n=3

1
n ln n[ln(ln n)]p

15. It can be shown that
∫ 1
0 x−x dx =

∑∞
n=1 n

−n. Use the Inte‐
gral Test to show that the series is convergent, and hence
conclude that the integral is convergent.
Hint: remember, you only need to show that the integral in
the Integral Test is convergent–you do not need to be able
to evaluate it.
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Chapter 9 Sequences and Series

9.4 Comparison Tests
In this section we will be comparing a given series with series that we know
either converge or diverge.

Theorem 9.4.1 Direct Comparison Test
Let {an} and {bn} be positive sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

Note: A sequence {an} is a positive
sequence if an > 0 for all n.

Because of Theorem 9.2.5, any the‐
orem that relies on a positive se‐
quence still holds true when an > 0
for all but a finite number of values
of n.

Proof
First consider the partial sums of each series.

Sn =
n∑

i=1
ai and Tn =

n∑
i=1

bi

Since both series have positive terms we know that

Sn ≤ Sn + an+1 =

n∑
i=1

ai + an+1 =

n+1∑
i=1

ai = Sn+1

and

Tn ≤ Tn + bn+1 =

n∑
i=1

bi + bn+1 =

n+1∑
i=1

bi = Tn+1

Therefore, both of the sequences of partial sums,{Sn} and {Tn}, are increasing.
For n ≥ N, we’re now going to split each series into two parts:

S =
N−1∑
i=1

ai T =

N−1∑
i=1

bi

S̄n =
n∑

i=N

ai T̄n =
n∑

i=N

bi.

Notes:
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This means that Sn = S + S̄n and Tn = T + T̄n. Also, because an ≤ bn for all
n ≥ N, we must have S̄n ≤ T̄n.

For the first part of the theorem, assume that
∞∑
n=1

bn converges. Since bn ≥ 0

we know that

Tn =
n∑

i=1
bi ≤

∞∑
i=1

bi

From above we know that S̄n ≤ T̄n for all n ≥ N so we also have

Sn = S+ S̄n ≤ S+ T̄n = S+ Tn − T = S− T+
∞∑
i=1

bi

Because
∞∑
i=1

bi converges it must have a finite value and {Sn} is bounded above.

We also showed that {Sn} is increasing so by Theorem 9.1.6 we know {Sn} con‐

verges and so
∞∑
n=1

an converges.

For the second part, assume that
∞∑
n=1

an diverges. Because an ≥ 0 we must

have lim
n→∞

Sn = ∞. We also know that for all n ≥ N, S̄n ≤ T̄n. This means that

lim
n→∞

Tn = lim
n→∞

(T+ T̄n)

≥ T+ lim
n→∞

S̄n = T+ lim
n→∞

(Sn − S) = T− S+ lim
n→∞

Sn = ∞.

Therefore, {Tn} is a divergent sequence and so
∞∑
i=1

bn diverges. □

Watch the video:
Direct Comparison Test / Limit Comparison Test
for Series — Basic Info at
https://youtu.be/LAHKu3B-1zE

Notes:
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Chapter 9 Sequences and Series

Example 9.4.1 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

SOLUTION This series is neither a geometric or p‐series, but seems re‐
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 9.4.1,
∞∑
n=1

1
3n + n2

converges.

Example 9.4.2 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=2

n3

n4 − 1
.

SOLUTION We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

We have
n3

n4 − 1
>

n3

n4
=

1
n
for all n ≥ 2.

The Harmonic Series,
∞∑
n=1

1
n
, diverges, so we conclude that

∞∑
n=1

n3

n4 − 1
di‐

verges as well.

The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

n3

n4 + 1
. It is very similar to the divergent series given in Exam‐

ple 9.4.2. We suspect that it also diverges, as
1
n

≈ n3

n4 + 1
for large n. How‐

ever, the inequality that we naturally want to use “goes the wrong way”: since
n3

n4 + 1
<

n3

n4
=

1
n
for all n ≥ 1. The given series has terms less than the terms

of a divergent series, and we cannot conclude anything from this.
Fortunately, we can apply another test to the given series to determine its

convergence.

Notes:
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Limit Comparison Test

Theorem 9.4.2 Limit Comparison Test
Let {an} and {bn} be positive sequences.

1. If lim
n→∞

an
bn

= L, where L is a positive real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

Proof

1. We have 0 < L < ∞ so we can find two positive numbers,m andM such
that m < L < M. Because L = lim

n→∞

an
bn

we know that for large enough

n the quotient an
bn must be close to L. So there must be a positive integer

N such that if n > N we also have m <
an
bn

< M. Multiply by bn and

we have mbn < an < Mbn for n > N. If
∞∑
n=1

bn diverges, then so does
∞∑
n=1

mbn. Also since mbn < an for sufficiently large n, by the Comparison

Test
∞∑
n=1

an also diverges.

Similarly, if
∞∑
n=1

bn converges, then so does
∞∑
n=1

Mbn. Since an < Mbn for

sufficiently large n, by the Comparison Test
∞∑
n=1

an also converges.

2. Since lim
n→∞

an
bn

= 0, there is a number N > 0 such that

Notes:
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∣∣∣∣anbn − 0
∣∣∣∣ < 1 for all n > N

an < bn since an and bn are positive

Now since
∞∑
n=1

bn converges,
∞∑
n=1

an converges by the Comparison Test.

3. Since lim
n→∞

an
bn

= ∞, there is a number N > 0 such that
an
bn

> 1 for all n > N

an > bn for all n > N

Now since
∞∑
n=1

bn diverges,
∞∑
n=1

an diverges by the Comparison Test. □

Theorem 9.4.2 is most useful when the convergence of the series from {bn}
is known and we are trying to determine the convergence of the series from
{an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

n3

n4 + 1
which motivated this new test.

Example 9.4.3 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

n3

n4 + 1
using the Limit Comparison Test.

SOLUTION We compare the terms of
∞∑
n=1

n3

n4 + 1
to the terms of the

Harmonic Series
∞∑
n=1

1
n
:

lim
n→∞

n3/(n4 + 1)
1/n

= lim
n→∞

n4

n4 + 1
= lim

n→∞

1
1+ 1/n4

= 1.

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

n3

n4 + 1
diverges as

well.

Notes:
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Example 9.4.4 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

SOLUTION This series is similar to the one in Example 9.4.1, but nowwe
are considering “3n − n2” instead of “3n + n2.” This difference makes applying
the Direct Comparison Test difficult.

Instead, we use the Limit Comparison Test with the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

by LHR
= lim

n→∞

ln 3 · 3n

ln 3 · 3n − 2n
by LHR
= lim

n→∞

(ln 3)23n

(ln 3)23n − 2
by LHR
= lim

n→∞

(ln 3)33n

(ln 3)33n
= 1.

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well.

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate increasing exponentials, which dominate alge‐
braic functions (e.g., polynomials), which dominate logarithms. In the previous
example, the dominant term of

1
3n − n2

was 3n, so we compared the series to
∞∑
n=1

1
3n

. It is hard to apply the Limit Comparison Test to series containing facto‐

rials, though, as we have not learned how to apply L’Hôpital’s Rule to n!.

Example 9.4.5 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
n+ 3

n2 − n+ 1
.

SOLUTION We naïvely attempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2. Knowing
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that
∞∑
n=1

1
n2

converges, we attempt to apply the Limit Comparison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 9.4.2 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con‐

verges. Ultimately, our test has not revealed anything about the convergence of
our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
functions, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is n1/2 and the dominant term of the
denominator is n2. Thus we should compare the terms of the given series to
n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1
= 1 (Apply L’Hôpital’s Rule).

Since the p‐series
∞∑
n=1

1
n3/2

converges, we conclude that
∞∑
n=1

√
n+ 3

n2 − n+ 1
con‐

verges as well.

The tests we have encountered so far have required that we analyze series
from positive sequences (the absolute value of the ratio and the root tests of Sec‐
tion 9.6 will convert the sequence into a positive sequence). The next section
relaxes this restriction by considering alternating series, where the underlying
sequence has terms that alternate between being positive and negative.
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Exercises 9.4
Terms and Concepts

1. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that 0 ≤ bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

2. Suppose
∞∑
n=0

an is divergent, and there are sequences {bn}

and {cn} such that 0 ≤ bn ≤ an ≤ cn for all n. What can

be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 3–8, use the Direct Comparison Test to determine
the convergence of the given series; state what series is used
for comparison.

3.
∞∑
n=1

1
n2 + 3n− 5

4.
∞∑
n=1

1
4n + n2 − n

5.
∞∑
n=1

ln n
n

6.
∞∑
n=1

1
n! + n

7.
∞∑
n=2

1√
n2 − 1

8.
∞∑
n=5

1√
n− 2

In Exercises 9–14, use the Limit Comparison Test to determine
the convergence of the given series; state what series is used
for comparison.

9.
∞∑
n=1

1
n2 − 3n+ 5

10.
∞∑
n=1

1
4n − n2

11.
∞∑
n=4

ln n
n− 3

12.
∞∑
n=1

1√
n2 + n

13.
∞∑
n=1

1
n+

√
n

14.
∞∑
n=1

sin
(
1/n
)

In Exercises 15–24, use the Direct Comparison Test or the Lim‐
it Comparison Test to determine the convergence of the given
series. State which series is used for comparison.

15.
∞∑
n=1

n2 + n+ 1
n3 − 5

16.
∞∑
n=1

n− 10
n2 + 10n+ 10

17.
∞∑
n=1

2n

5n + 10

18.
∞∑
n=1

n+ 5
n3 − 5

19.
∞∑
n=1

n
n4 + 1

20.
∞∑
n=1

n− 1
n4n

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=1

1√
n+ 100

23.
∞∑
n=2

1
n2 ln n

24.
∞∑
n=1

√
n+ 3

n2 + 17

In Exercises 25–32, determine the convergence of the given
series. State the test used; more than one test may be appro‐
priate.

25.
∞∑
n=1

n2

2n

26.
∞∑
n=1

1
(2n+ 5)3

27.
∞∑
n=1

n!
10n

28.
∞∑
n=1

ln n
n!

29.
∞∑
n=1

1
3n + n

30.
∞∑
n=1

n− 2
10n+ 5

31.
∞∑
n=1

3n

n3

32.
∞∑
n=1

cos(1/n)√
n
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33. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an

34. Wehave shown that the harmonic series 1+ 1
2+

1
3+

1
4+. . .

diverges. Suppose we remove some terms by considering
the series

∑∞
n=1

1
pn

where pn is the nth prime (so p1 = 2,
p2 = 3, p3 = 5, etc). Determine if this series converges or
diverges, using the fact that pn < 2n ln n for all n sufficient‐
ly large.
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9.5 Alternating Series and Absolute Convergence

9.5 Alternating Series and Absolute Convergence
The series convergence tests we have used require that the underlying sequence
{an} be a positive sequence. (We can relax this with Theorem 9.2.5 and state
that there must be an N > 0 such that an > 0 for all n > N; that is, {an} is
positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 9.5.1 Alternating Series
Let {bn}be a positive sequence. An alternating series is a series of either
the form

∞∑
n=1

(−1)nbn or
∞∑
n=1

(−1)n+1bn.

We want to think that an alternating sequence {an} is related to a positive
sequence {bn} by an = (−1)nbn.

Recall that the terms of Harmonic Series come from the Harmonic Sequence
{bn} = { 1

n}. An important alternating series is theAlternatingHarmonic Series:
∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alternating series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · ·

Theorem 9.2.1 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alternating series thatmeet
a few conditions.

Notes:
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Theorem 9.5.1 Alternating Series Test
Let {bn} be a positive, decreasing sequence where lim

n→∞
bn = 0. Then

∞∑
n=1

(−1)nbn and
∞∑
n=1

(−1)n+1bn

converge.

The basic idea behind Theorem 9.5.1 is illustrated in Figure 9.5.1. A positive,
decreasing sequence {bn} is shown along with the partial sums

Sn =
n∑

i=1
(−1)i+1bi = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn.

Because {bn} is decreasing, the amount by which Sn bounces up and down de‐
creases. Moreover, the odd terms of Sn form a decreasing, bounded sequence,
while the even terms of Sn form an increasing, bounded sequence. Since bound‐
ed, monotonic sequences converge (see Theorem 9.1.6) and the terms of {bn}
approach 0, we will show below that the odd and even terms of Sn converge to
the same common limit L, the sum of the series.

L

2 4 6 8 10

0.5

1

n

y

bn Sn

Figure 9.5.1: Illustrating convergence
with the Alternating Series Test.

Proof
Because {bn} is a decreasing sequence, we have bn−bn+1 ≥ 0. Wewill consider
the even and odd partial sums separately. First consider the even partial sums.

S2 = b1 − b2 ≥ 0 since b2 ≤ b1
S4 = b1 − b2 + b3 − b4 = S2 + b3 − b4 ≥ S2 since b3 − b4 ≥ 0
S6 = S4 + b5 − b6 ≥ S4 since b5 − b6 ≥ 0
...

S2n = S2n−2 + b2n−1 − b2n ≥ S2n−2 since b2n−1 − b2n ≥ 0

We now have
0 ≤ S2 ≤ S4 ≤ S6 ≤ · · · ≤ S2n ≤ · · ·

so {S2n} is an increasing sequence. But we can also write

S2n = b1 − b2 + b3 − b4 + b5 − · · · − b2n−2 + b2n−1 − b2n
= b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n

Each term in parentheses is positive and b2n is positive so we have S2n ≤ b1
for all n. We now have the sequence of even partial sums, {S2n}, is increasing

Notes:
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9.5 Alternating Series and Absolute Convergence

and bounded above so by Theorem 9.1.6 {S2n} converges. Since we know it
converges, we will assume it’s limit is L or

lim
n→∞

S2n = L

Next we determine the limit of the sequence of odd partial sums.

lim
n→∞

S2n+1 = lim
n→∞

(S2n + b2n+1)

= lim
n→∞

S2n + lim
n→∞

b2n+1

= L+ 0
= L

Both the even and odd partial sums converge to L so we have lim
n→∞

Sn = L, which
means the series is convergent. □

Watch the video:
Alternating Series — Another Example 4 at
https://youtu.be/aOiZvfFAMW8

Example 9.5.1 Applying the Alternating Series Test
Determine if the Alternating Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=2

(−1)n
ln n
n

3.
∞∑
n=1

(−1)n+1 |sin n|
n2

SOLUTION

1. This is the Alternating Harmonic Series as seen previously. The underlying
sequence is {bn} = {1/n}, which is positive, decreasing, and approaches
0 as n → ∞. Therefore we can apply the Alternating Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.

2. The underlying sequence is {bn} = {(ln n)/n}. This is positive for n ≥ 2

and lim
n→∞

ln n
n

= lim
n→∞

1
n

= 0 (use L’Hôpital’s Rule). However, the se‐
quence is not decreasing for all n. It is straightforward to compute b1 ≈

Notes:
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0.347, b2 ≈ 0.366, and b3 ≈ 0.347: the sequence is increasing for at least
the first 2 terms.
We do not immediately conclude that we cannot apply the Alternating
Series Test. Rather, consider the long‐term behavior of {bn}. Treating
bn = b(n) as a continuous function of n defined on [2,∞), we can take
its derivative:

b ′(n) =
1− ln n

n2
.

The derivative is negative for all n ≥ 3 (actually, for all n > e), mean‐
ing b(n) = bn is decreasing on [3,∞). We can apply the Alternating
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n
ln n
n

converges; adding the terms with n = 2 does not change

the convergence (i.e., we apply Theorem 9.2.5).
The important lesson here is that as before, if a series fails to meet the
criteria of the Alternating Series Test on only a finite number of terms, we
can still apply the test.

3. The underlying sequence is {bn} = {|sin n| /n2}. This sequence is positive
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of |sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {bn} decreasing, therefore we
cannot apply the Alternating Series Test.
Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 9.5.1.

One of the famous results of mathematics is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the AlternatingHarmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The no‐

tion that alternating the signs of the terms in a series canmake a series converge
leads us to the following definitions.
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9.5 Alternating Series and Absolute Convergence

Definition 9.5.2 Absolute and Conditional Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

2. A series
∞∑
n=1

an converges conditionally if
∞∑
n=1

an converges but

∞∑
n=1

|an| diverges.

Note: In Definition 9.5.2,
∞∑
n=1

an is

not necessarily an alternating se‐
ries; it just may have some negative
terms.

Thus we say the Alternating Harmonic Series converges conditionally.

Example 9.5.2 Determining absolute and conditional convergence.
Determine if the following series converge absolutely, conditionally, or diverge.

1.
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
2.

∞∑
n=3

(−1)n
3n− 3
5n− 10

SOLUTION

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The sequence { n+ 3
n2 + 2n+ 5

} is monotonically decreasing, so that the se‐

ries
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the Alternating Series Test; we

conclude it converges conditionally.

2. The series
∞∑
n=3

∣∣∣∣(−1)n
3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the Test for Divergence, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n
3n− 3
5n− 10

fails the conditions of the Alternating Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n → ∞. We can state
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further that this series diverges; as n → ∞, the series effectively adds and
subtracts 3/5 over and over. This causes the sequence of partial sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n
3n− 3
5n− 10

diverges.

Knowing that a series converges absolutely allows us to make two impor‐
tant statements, given in the following theorem. The first is that absolute con‐

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an| will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

Theorem 9.5.2 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of

Notes:
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9.5 Alternating Series and Absolute Convergence

an absolutely convergent series can be rearranged in any way without affecting
the sum.

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition‐
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value or infinity.

Before we consider an example, we state the following theorem that illus‐
trates how the alternating structure of an alternating series is a powerful tool
when approximating the sum of a convergent series.

Theorem 9.5.3 The Alternating Series Approximation Theorem
Let {bn} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let Sn and L be the nth partial sum and sum, respectively,

of either
∞∑
n=1

(−1)nbn or
∞∑
n=1

(−1)n+1bn. Then

1. |Sn − L| < bn+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 9.5.3 states that the nth partial sum of a convergent al‐
ternating series will be within bn+1 of its total sum. Consider the alternating

series we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since

b14 = 1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places after the decimal.

Some alternating series converge slowly. In Example 9.5.1 we determined

the series
∞∑
n=2

(−1)n+1 ln n
n

converged. With n = 1001, we find (ln n)/n ≈

0.0069, meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places after
the decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

Notes:
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Example 9.5.3 Approximating the sums of convergent alternating series
Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.

SOLUTION

1. Using Theorem 9.5.3, we want to find n where 1/n3 ≤ 0.001:

1
n3

≤ 0.001 =
1

1000
n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Let L be the sum of this series. By Part 1 of the theorem, |S9 − L| < b10 =
1/1000. We can compute S9 = 0.902116, which our theorem states is
within 0.001 of the total sum.
We can use Part 2 of the theorem to obtain an even more accurate result.
As we know the 10th term of the series is−1/1000, we can easily compute
S10 = 0.901116. Part 2 of the theorem states that L is between S9 and S10,
so 0.901116 < L < 0.902116.

2. We want to find nwhere (ln n)/n ≤ 0.001. We start by solving (ln n)/n =
0.001 for n. This cannot be solved algebraically, so we will use Newton’s
Method to approximate a solution.
Let f(x) = ln(x)/x− 0.001; we want to know where f(x) = 0. We make a
guess that xmust be “large,” so our initial guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate solution xn, our next
approximation xn+1 is given by

xn+1 = xn −
f(xn)
f ′(xn)

.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Notes:
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Using a computer, we find that Newton’s Method seems to converge to a
solution x = 9118.01 after 8 iterations. Taking the next integer higher, we
have n = 9119, where ln(9119)/9119 = 0.000999903 < 0.001.
Again using a computer, we find S9118 = −0.160369. Part 1 of the theo‐
rem states that this is within 0.001 of the actual sum L. Already knowing
the 9,119th term, we can compute S9119 = −0.159369, meaning

−0.160369 < L < −0.159369.

Notice how the first series converged quite quickly, where we needed only 10
terms to reach the desired accuracy, whereas the second series took over 9,000
terms.

We now consider the Alternating Harmonic Series once more. We have stat‐
ed that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Example 9.5.1).
Consider the rearrangement where every positive term is followed by two

negative terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms
and simplify:(

1− 1
2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum.
(One could try to argue that the Alternating Harmonic Series does not actually
converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to L,
for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
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quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We mentioned earlier that the Integral Test did not work well with series
containing factorial terms. The next section introduces the Ratio Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.
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Exercises 9.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alternating series?

2. A series
∞∑
n=1

(−1)nan convergeswhen {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but
∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5–18, an alternating series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is con‐

ditional or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=0

(−e)−n

7.
∞∑
n=0

(−1)n n+ 5
3n− 5

8.
∞∑
n=1

(−1)n 2
n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=2

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−1)n2−n2

17.
∞∑
n=1

(−1)n√
n

18.
∞∑
n=2

(−1)n

n(ln n)2

Let Sn be the nth partial sum of a series. In Exercises 19–22, a
convergent alternating series is given and a value of n. Com‐
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

19.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

20.
∞∑
n=1

(−1)n+1

n4
, n = 4

21.
∞∑
n=0

(−1)n

n!
, n = 6

22.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 23–26, a convergent alternating series is given
along with its sum and a value of ε. Use Theorem 9.5.3 to find
n such that the nth partial sum of the series is within ε of the
sum of the series.

23.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001

24.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

25.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

26.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8

27. The partial sums in problems 23 and 25 can be used to app‐
roximate π. Using the values of n from these problems,
compute the respective partial sums and then use them
to approximate π. Which gives a better estimate of π?
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28. The book shows a rearrangement of the Alternating Har‐
monic Series,(
1− 1

2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ . . .

which gives the sum 1
2 ln 2. Note that the terms in paren‐

theses are positive, so if we simplified those terms we
would have an alternating series. Without actually simpli‐
fying, show that the same scheme of rearranging terms so
that each positive term is followed by two successive neg‐
ative terms yields(

1− 1
2

)
− 1

4
− 1

8
+

(
1
3
− 1

6

)
− 1

12
− 1

16
+(

1
5
− 1

10

)
− 1

20
− 1

24
+ . . .

and then show that this new rearrangement of the Alter‐
nating Harmonic Series has the sum 1

4 ln 2.
Hint: move each right parenthesis one term to the right
and then simplify inside the parentheses.
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9.6 Ratio and Root Tests

9.6 Ratio and Root Tests

Theorem 9.2.4 states that if a series
∞∑
n=1

an converges, then lim
n→∞

an = 0. That

is, the terms of {an} must get very small. Not only must the terms approach 0,
they must approach 0 “fast enough”: while lim

n→∞
1/n = 0, the Harmonic Series

∞∑
n=1

1
n
diverges as the terms of {1/n} do not approach 0 “fast enough.”

The comparison tests of Section 9.4 determine convergence by comparing
terms of a series to terms of another series whose convergence is known. This
section introduces the Ratio and Root Tests, which determine convergence by
analyzing the terms of a series to see if they approach 0 “fast enough.”

Ratio Test

Theorem 9.6.1 Ratio Test
Let {an} be a sequence where lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Ratio Test is inconclusive.

The principle of the Ratio Test is this: if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence. A full proof can be found at http://tutorial.math.
lamar.edu/Classes/CalcII/RatioTest.aspx.

Watch the video:
Using the Ratio Test to Determine if a Series Con‐
verges #1 at
https://youtu.be/iy8mhbZTY7g

Notes:
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Chapter 9 Sequences and Series

Example 9.6.1 Applying the Ratio Test
Use the Ratio Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

SOLUTION

1.
∞∑
n=1

2n

n!
: lim

n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the Ratio Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
: lim

n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ratio Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

: lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ratio Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.

The Ratio Test is not effectivewhen the terms of a series only contain algebra‐
ic functions (e.g., polynomials). It ismost effectivewhen the terms contain some
factorials or exponentials. The previous example also reinforces our developing
intuition: factorials dominate exponentials, which dominate algebraic functions,

Notes:
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9.6 Ratio and Root Tests

which dominate logarithmic functions. In Part 1 of the example, the factorial in
the denominator dominated the exponential in the numerator, causing the se‐
ries to converge. In Part 2, the exponential in the numerator dominated the
algebraic function in the denominator, causing the series to diverge.

While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 9.6.2 Applying the Ratio Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

SOLUTION Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 ·7 · · · · ·2 ·1 = 40,320, whereas
the latter is 2(4 · 3 · 2 · 1) = 48.

Applying the Ratio Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

Noting that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the Ratio Test we conclude
∞∑
n=1

n!n!
(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Note: We won’t go into the proof,
but the idea (as with the Ratio Test)
is that the series is behaving enough
like the geometric series

∑∞
n=0 L

n

that we can determine convergence.

Notes:
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Chapter 9 Sequences and Series

Theorem 9.6.2 Root Test
Let {an} be a sequence where lim

n→∞
|an|1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

Note: We can use L’Hôpital’s Rule
to show that n1/n approaches 1. If
someone insists on using the Root
Test with factorials, it can be useful
to know that (n!)1/n approaches
infinity.

Example 9.6.3 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=2

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

SOLUTION

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the Ratio Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 1, we conclude the series diverges.

Notes:
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9.6 Ratio and Root Tests

We end here our study of tests to determine convergence. The next sec‐
tion of this text provides strategies for testing series, while the back of the book
contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, whichwewill consider in Section 9.8.
We will use power series to create functions where the output is the result of an
infinite summation.

Notes:
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Exercises 9.6
Terms and Concepts
1. The Ratio Test is not effective when the terms of a se‐

quence only contain functions.
2. The Ratio Test is most effective when the terms of a se‐

quence contains and/or functions.
3. What three convergence tests do not work well with terms

containing factorials?
4. The Root Test works particularly well on series where each

term is to a .

Problems
In Exercises 5–16, determine the convergence of the given se‐
ries using the Ratio Test. If the Ratio Test is inconclusive, state
so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

15.
∞∑
n=1

e−nn!

16.
∞∑
n=1

e1/n

n3

In Exercises 17–26, determine the convergence of the given se‐
ries using the Root Test. If the Root Test is inconclusive, state
so and determine convergence with another test.

17.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

18.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

19.
∞∑
n=1

2nn2

3n

20.
∞∑
n=1

1
nn

21.
∞∑
n=1

3n

n22n+1

22.
∞∑
n=1

4n+7

7n

23.
∞∑
n=1

(
n2 − n
n2 + n

)n

24.
∞∑
n=1

(
1
n
− 1

n2

)n

25.
∞∑
n=2

1(
ln n
)n

26.
∞∑
n=2

n2(
ln n
)n

27. We know that the harmonic series 1 + 1
2 + 1

3 + 1
4 + . . .

diverges. Suppose we remove some terms by considering
the series

∑∞
n=1

1
Fn

where Fn is the nth Fibonacci number
(so F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, …, and in gener‐
al Fn = Fn−1+Fn−2 for n ≥ 3). Determine if this series con‐
verges or diverges, using the fact that limn→∞

Fn+1
Fn

= ϕ

where ϕ = 1
2 (1+

√
5) is known as the Golden Ratio.
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9.7 Strategy for Testing Series

9.7 Strategy for Testing Series
We have now covered all of the tests for determining the convergence or diver‐
gence of a series, which we summarize here. Because more than one test may
apply to a given series, you should always go completely through the guidelines
and identify all possible tests that you can use. Once you’ve done this, you can
identify the test that will be the easiest for you to use.

1. With a quick glance does it look like the series terms don’t converge to
zero in the limit, i.e. does lim

n→∞
an ̸= 0? If so, use the Test for Divergence.

Note that you should only use the Test for Divergence if a quick glance
suggests that the series terms may not converge to zero in the limit.

2. Is the series a p‐series
(∑

n−p
)
or a geometric series

(∑
arn
)
? If so,

use the fact that p‐series will converge only if p > 1 and a geometric series
will only converge if |r| < 1. Remember as well that often some algebraic
manipulation is required to get a geometric series into the correct form.

3. Is the series similar to a p‐series or a geometric series? If so, try the Com‐
parison Test.

4. Is the series a rational expression involving only polynomials or polynomi‐
als under radicals? If so, try the Comparison test or the Limit Comparison
Test. Remember however, that in order to use the Comparison Test and
the Limit Comparison Test the series terms all need to be positive.

5. Is the series of the form
∑

(−1)nan? If so, then the Alternating Series
Test may work.

6. Does the series contain factorials or constants raised to powers involving
n? If so, then the Ratio Testmaywork. Note that if the series term contains
a factorial then the only test that we have that will work is the Ratio Test.
(If you find that L > 1, then the divergence test also would have worked.)

7. Can the series terms be written in the form an = (bn)n? If so, then the
Root Test may work.

8. If an = f(n) for some positive, decreasing function and
∫ ∞

a
f(x) dx is easy

to evaluate then the Integral Test may work.

Again, remember that these are only a set of guidelines and not a set of hard
and fast rules to use when trying to determine the best test to use on a series.
If more that one test can be used, try to use the test that will be the easiest for

Notes:

523



Chapter 9 Sequences and Series

you to use. These guidelines are also summarized in a table in the back of the
book.

We now consider several examples.

Example 9.7.1 Testing Series
Determine whether the given series converges absolutely, converges condition‐
ally, or diverges.

1.
∞∑
n=2

(−1)nn
n2 + 3

2.
∞∑
n=1

n2 − 3n
4n2 − 2n+ 1

3.
∞∑
n=2

en

(n+ 3)!

SOLUTION

1. We see that this series is alternating so we use the alternating series test.
The underlying sequence is {an} = { n

n2+3} which is positive and decreas‐

ing since a′(n) =
3− n2

(n2 + 3)2
< 0 for n ≥ 2. We also see lim

n→∞

n
n2 + 3

=

0 so by the Alternating Series Test
∞∑
n=2

(−1)nn
n2 + 3

converges. We now de‐

termine if it converges absolutely. Consider the series
∞∑
n=2

∣∣∣∣ (−1)nn
n2 + 3

∣∣∣∣ =
∞∑
n=2

n
n2 + 3

. Using the Limit Comparison Test with the divergent p‐series

∞∑
n=2

n
n2

=

∞∑
n=2

1
n
,

∞∑
n=2

n
n2 + 3

diverges. Therefore,
∞∑
n=2

(−1)nn
n2 + 3

converges

conditionally.

2. lim
n→∞

n2 − 3n
4n2 − 2n+ 1

=
1
4
so by the Test for Divergence

∞∑
n=1

n2 − 3n
4n2 − 2n+ 1

diverges.

Notes:
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9.7 Strategy for Testing Series

3. We see the factorial and use the Ratio Test. All terms of the series are
positive so we consider

lim
n→∞

an+1

an
= lim

n→∞

en+1

(n+4)!
en

(n+3)!

= lim
n→∞

en+1(n+ 3)!
en(n+ 4)!

= lim
n→∞

e · en(n+ 3)!
en(n+ 4)(n+ 3)!

= lim
n→∞

e
n+ 4

= 0 < 1

So by the Ratio Test,
∞∑
n=2

en

(n+ 3)!
converges. Because all of the series

terms are positive it converges absolutely.

Notes:
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Exercises 9.7
Problems

In Exercises 1–38, determine whether the given series con‐
verges absolutely, converges conditionally, or diverges.

1.
∞∑
n=1

1
3
√

n(n+ 2)(n+ 4)

2.
∞∑
n=1

(
−2
3

)n−1

3.
∞∑
n=1

32n+1

n5n−1

4.
∞∑
n=1

n−2e
1
n

5.
∞∑
n=1

n!
ln(n+ 2)

6.
∞∑
n=1

(n2 + 4)(−2)1−n

7.
∞∑
n=1

2
n+ 4n

8.
∞∑
n=1

en

ne

9.
∞∑
n=1

(−1)n
4
√
n

10.
∞∑
n=1

sin( 4πn3 )

n4π/3

11.
∞∑
n=1

3nn!
(n+ 2)!

12.
∞∑
n=1

(−1)n
√
n

n+ 1

13.
∞∑
n=1

1− cos n
n3

14.
∞∑
n=1

4+ 3n− 5n3

2+ n3

15.
∞∑
n=1

(−1)n n
2 + 1

n4 + 1

16.
∞∑
n=1

(3n)n

n3n

17.
∞∑
n=1

e2n

(2n− 1)!

18.
∞∑
n=2

1
n
√
ln n

19.
∞∑
n=2

(−1)n−1
√
ln n
n

20.
∞∑
n=1

n2

(−2)n

21.
∞∑
n=1

(−1)n

(2n+ 5)3

22.
∞∑
n=1

n!
(−10)n

23.
∞∑
n=1

ln n
n!

24.
∞∑
n=1

1
(−3)n + n

25.
∞∑
n=1

(−1)n(n− 2)
10n+ 5

26.
∞∑
n=1

(−3)n

n3

27.
∞∑
n=1

cos(1/n)√
n

28.
∞∑
n=1

(−1)n(n2 + 4n− 2)
n3 + 4n2 − 3n+ 7

29.
∞∑
n=1

n4(−4)n

n!

30.
∞∑
n=1

n2

(−3)n + n

31.
∞∑
n=1

(−1)nn√
n2 + 4n+ 1

32.
∞∑
n=1

(−3)n

nn

33.
∞∑
n=1

n!n!n!
(3n)!

34.
∞∑
n=2

(−1)n

ln n

35.
∞∑
n=1

(
n+ 2
n+ 1

)n

36.
∞∑
n=2

n3(
ln n
)n

37.
∞∑
n=1

(
1
n
− 1

n+ 2

)

38.
∞∑
n=1

n!
10n
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9.8 Power Series

9.8 Power Series

So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

Definition 9.8.1 Power Series
Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

2. The power series in x centered at c is the series
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · ·

Example 9.8.1 Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

SOLUTION

1. One of the conventions we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + · · ·

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series starting at n = 0 with the understanding that

Notes:
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Chapter 9 Sequences and Series

a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n

= (x+ 1)− (x+ 1)2

2
+

(x+ 1)3

3
− (x+ 1)4

4
+

(x+ 1)5

5
· · ·

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!

= −1+
(x− π)2

2
− (x− π)4

24
+

(x− π)6

6!
− (x− π)8

8!
· · ·

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 9.8.1, we recognized the series
∞∑
n=0

xn as a geo‐

metric series in x. Theorem 9.2.1 states that this series converges only when
|x| < 1.

This raises the question: “For what values of x will a given power series con‐
verge?,” which leads us to a theorem and definition.

Theorem 9.8.1 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem 9.8.1
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may or may not converge at these endpoints.
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Definition 9.8.2 Radius and Interval of Convergence

1. The number R given in Theorem 9.8.1 is the radius of convergence
of a given series. When a series converges for only x = c, we say
the radius of convergence is 0, i.e., R = 0. When a series con‐
verges for all x, we say the series has an infinite radius of conver‐
gence, i.e., R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con‐
vergence tests we studied previously (especially the Ratio Test). However, the
tests all required that the terms of a series be positive. The following theorem
gives us a work‐around to this problem.

Theorem 9.8.2 The Radius of Convergence of a Series and
Absolute Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

|an(x− c)n| have the same radius of

convergence R.

Theorem 9.8.2 allows us to find the radius of convergence R of a series by
applying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.

Watch the video:
Power Series — Finding the Interval of Conver‐
gence at
https://youtu.be/01LzAU__J-0

Example 9.8.2 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn
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SOLUTION

1. We apply the Ratio Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣

|xn/n!|
= lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The Ratio Test shows us that regardless of the choice of x, the series con‐
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the Ratio Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣

|xn/n|
= lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x| .

The Ratio Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1.
To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

(−1)2n+1

n

=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the Alternating

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].
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3. We apply the Ratio Test to the series
∞∑
n=0

|2n(x− 3)n|:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣

|2n(x− 3)n|
= lim

n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞
|2(x− 3)| .

According to theRatioTest, the series convergeswhen |2(x− 3)| < 1 =⇒
|x− 3| < 1/2. The series is centered at 3, and x must be within 1/2 of 3
in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver‐
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the Ratio Test to
∞∑
n=0

|n!xn|:

lim
n→∞

∣∣(n+ 1)!xn+1
∣∣

|n!xn|
= lim

n→∞
|(n+ 1)x|

= ∞ for all x, except x = 0.

The Ratio Test shows that the series diverges for all x except x = 0. There‐
fore the radius of convergence is R = 0.

Power Series as Functions
We can use a power series to define a function:

f(x) =
∞∑
n=0

anxn
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where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Theorem 9.8.3 Derivatives and Indefinite Integrals of Power
Series Functions

Let f(x) =
∞∑
n=0

an(x − c)n be a function defined by a power series, with

radius of convergence R.

1. f(x) is continuous and differentiable on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

ann(x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 9.8.3:

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. Differentiation and integration are simply calculated term‐by‐term using
previous rules of integration and differentiation.

Example 9.8.3 Derivatives and indefinite integrals of power series

Let f(x) =

∞∑
n=0

xn. Find the following along with their respective intervals of

convergence.

1. f ′(x) and 2. F(x) =
∫

f(x) dx

SOLUTION We find the derivative and indefinite integral of f(x), follow‐
ing Theorem 9.8.3.
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1. f(x) = 1+ x+ x2 + x3 + x4 + · · · =
∞∑
n=0

xn

f ′(x) = 0+ 1+ 2x+ 3x2 + 4x3 + · · · =
∞∑
n=1

nxn−1

In Example 9.8.1, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).
To determine the interval of convergence of f ′(x), we consider the end‐
points of (−1, 1). When x = −1 we have

f ′(−1) =
∞∑
n=1

n(−1)n−1

which diverges by the Test for Divergence and when x = 1 we have

f ′(1) =
∞∑
n=1

n

which also diverges by the Test for Divergence. Therefore, the interval of
convergence of f ′(x) is (−1, 1).

2. f(x) = 1+ x+ x2 + x3 + · · · =
∞∑
n=0

xn

F(x) =
∫

f(x) dx = C+ x+
x2

2
+

x3

3
+

x4

4
+ · · ·

= C+
∞∑
n=0

xn+1

n+ 1
= C+

∞∑
n=1

xn

n

To find the interval of convergence of F(x), we again consider the end‐
points of (−1, 1). When x = −1 we have

F(−1) = C+
∞∑
n=1

(−1)n

n

The value of C is irrelevant; notice that the rest of the series is an Alter‐
nating Series that whose terms converge to 0. By the Alternating Series
Test, this series converges. (In fact, we can recognize that the terms of the
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series after C are the opposite of the Alternating Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+
∞∑
n=1

1
n

Notice that this summation is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1).

The previous example showed how to take the derivative and indefinite inte‐
gral of a power series withoutmotivation forwhywe care about such operations.
We may care for the sheer mathematical enjoyment “that we can”, which is mo‐
tivation enough for many. However, we would be remiss to not recognize that
we can learn a great deal from taking derivatives and indefinite integrals.

Recall that f(x) =

∞∑
n=0

xn in Example 9.8.3 is a geometric series. According

to Theorem 9.2.1, this series converges to 1/(1− x) when |x| < 1. Thus we can
say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1). (9.8.1)

Integrating the power series, (as done in Example 9.8.3,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (9.8.2)

while integrating the function f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (9.8.3)

Equating Equations (9.8.2) and (9.8.3), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Letting x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x| .
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We established in Example 9.8.3 that the series
∞∑
n=0

xn+1

n+ 1
converges at x = −1;

substituting x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the leftwehave the opposite of the AlternatingHarmonic Series; on the right,
we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

In Example 9.5.1 of Section 9.5 we said the Alternating Harmonic Series con‐
verges to ln 2, but did not show why this was the case. The work above shows
how we conclude that the Alternating Harmonic Series Converges to ln 2.

We use this type of analysis in the next example.

Example 9.8.4 Analyzing power series functions

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the behav‐

ior of f(x).

SOLUTION We start by making two notes: first, in Example 9.8.2, we
found the interval of convergence of this power series is (−∞,∞). Second, we
will find it useful later to have a few terms of the series written out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (9.8.4)

We now find the derivative:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re‐index
the series starting with n = 0:

=

∞∑
n=0

xn

n!

= f(x).
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We found the derivative of f(x) is f(x). The only functions for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see Equation (9.8.4)),
cmust be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicating that
f(x) = ex.

Example 9.8.4 and the work following Example 9.8.3 established relation‐
ships between a power series function and “regular” functions that we have
dealt with in the past. In general, given a power series function, it is difficult (if
not impossible) to express the function in terms of elementary functions. We
chose examples where things worked out nicely.

Representations of Functions with Power Series
It can be difficult to recognize an elementary function by its power series ex‐
pansion. It is far easier to start with a known function, expressed in terms of
elementary functions, and represent it as a power series function. One may
wonder why we would bother doing so, as the latter function probably seems
more complicated.

Let’s start off with a series we already know how to do, although when we
first ran across this series we didn’t think of it as a power series nor did we ac‐
knowledge that it represented a function. Recall that the geometric series is

∞∑
n=0

arn =
a

1− r
provided |r| < 1.
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We also know that if |r| ≥ 1 the series diverges. Now, if we take a = 1 and r = x
this becomes,

∞∑
n=0

xn =
1

1− x
provided |x| < 1 (9.8.5)

Turning this around we can see that we can represent the function

f(x) =
1

1− x
(9.8.6)

with the power series
∞∑
n=0

xn provided |x| < 1. (9.8.7)

This provision is important. We can clearly plug any number other than x = 1
into the function, however, we will only get a convergent power series if |x| < 1.
This means the equality in Equation (9.8.5) will only hold if |x| < 1. For any
other value of x the equality won’t hold. Note as well that we can also use this
to acknowledge that the radius of convergence of this power series is R = 1 and
the interval of convergence is |x| < 1.

This idea of convergence is important here. We will be representing many
functions as power series and it will be important to recognize that the repre‐
sentations will often only be valid for a range of x’s and that there may be values
of x that we can plug into the function that we can’t plug into the power series
representation.

In this section we are going to concentrate on representing functions with
power series where the function can be related back to a geometric series. In
this way we will hopefully become familiar with some of the kinds of manipu‐
lations that we will sometimes need when working with power series. We will
see in Section 9.10 that this strategy is useful for integrating functions that don’t
have elementary antiderivatives.

Example 9.8.5 Finding a Power Series
Find a power series representation for g(x) =

1
1+ x3

and determine its interval
of convergence.

SOLUTION Wewant to relate this functionback to Equation (9.8.6). This
is actually easier than it might look. Recall that the x in Equation (9.8.6) is simply
a variable and can represent anything. So, a quick rewrite of g(x) gives,

g(x) =
1

1− (−x3)
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and so the −x3 holds the same place as the x in Equation (9.8.6). Therefore, all
we need to do is replace the x in Equation (9.8.7) and we’ve got a power series
representation for g(x).

g(x) =
∞∑
n=0

(
−x3

)n provided
∣∣−x3

∣∣ < 1

Notice that we replaced both the x in the power series and in the interval of
convergence. All we need to do now is a little simplification.

g(x) =
∞∑
n=0

(−1)n x3n provided |x| < 1

So, in this case the interval of convergence is the same as the original power
series. This usually won’t happen. More often than not the new interval of
convergence will be different from the original interval of convergence.

Example 9.8.6 Finding a Power Series

Find a power series representation for h(x) =
2x2

1+ x3
and determine its interval

of convergence.

SOLUTION This function is similar to the previous function, however the
numerator is different. Since Equation (9.8.6) doesn’t have an x in the numerator
it appears that we can’t relate this function back to that. However, now that
we’ve worked the first example this one is actually very simple since we can use
the result of the answer from that example. To see how to do this let’s first
rewrite the function a little.

h(x) = 2x2
1

1+ x3
.

Now, from the first example we’ve already got a power series for the second
term so let’s use that to write the function as,

h(x) = 2x2
∞∑
n=0

(−1)n x3n provided |x| < 1

Notice that the presence of x’s outside of the series will NOT affect its con‐
vergence and so the interval of convergence remains the same. The last step
is to bring the coefficient into the series and we’ll be done. When we do this,
make sure to combine the x’s as well. We typically only want a single x in a power
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series.

h(x) =
∞∑
n=0

2 (−1)n x3n+2 provided |x| < 1.

As we saw in the previous example we can often use previous results to help us
out. This is an important idea to remember as it can often greatly simplify our
work.

Example 9.8.7 Finding a Power Series
Find a power series representation for f(x) =

x
5− x

and determine its interval
of convergence.

SOLUTION So again, we have an x in the numerator. As with the last
example factor x out and we have f(x) = x

1
5− x

. If we had a power series

representation for g(x) =
1

5− x
we could get a power series representation for

f(x). We need the number in the denominator to be a one so we rewrite the
denominator.

g(x) =
1
5

1
1− x

5

Now all we need to do to get a power series representation is to replace the
x in Equation (9.8.7) with

x
5
. Doing this gives

g(x) =
1
5

∞∑
n=0

( x
5

)n
provided

∣∣∣ x5 ∣∣∣ < 1.

Now simplify the series.

g(x) =
1
5

∞∑
n=0

xn

5n

=

∞∑
n=0

xn

5n+1

The interval of convergence for this series is∣∣∣ x5 ∣∣∣ < 1 ⇒ 1
5
|x| < 1 ⇒ |x| < 5
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We now have a power series representation for g(x) but we need to find a
power series representation for the original function. All we need to do for this
is to multiply the power series representative for g(x) by x and we’ll have it.

f(x) = x
1

5− x

= x
∞∑
n=0

xn

5n+1

=

∞∑
n=0

xn+1

5n+1

The interval of convergence doesn’t change and so it will be |x| < 5.

Example 9.8.8 Re‐indexing a Power Series
Find a power series representation for f(x) =

1+ x
1− x

.

SOLUTION We can start by writing this as

f(x) = (1+ x)
∞∑
n=0

xn.

The problem with this representation is that the 1 + x makes this not a power
series —we only want a single occurrence of x. The proceed, we’ll split this into
two sums

f(x) =
∞∑
n=0

xn + x
∞∑
n=0

xn =
∞∑
n=0

xn +
∞∑
n=0

xn+1.

Because the second sum uses n+ 1, we can re‐index it to get a sum involving xn,
which is our power series

f(x) =
∞∑
n=0

xn + x
∞∑
n=0

xn =
∞∑
n=0

xn +
∞∑
n=1

xn = 1+ 2
∞∑
n=1

xn.

We now consider several examples where differentiation and integration of
power series from Theorem 9.8.3 are used to write the power series for a func‐
tion.
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Example 9.8.9 Differentiating a Power Series
Find a power series representation for g(x) =

1
(1− x)2

and determine its radius

of convergence.

SOLUTION We know that

1
(1− x)2

=
d
dx

(
1

1− x

)
.

Since we have a power series representation for
1

1− x
, we can differentiate that

power series to get a power series representation for g(x).

g(x) =
1

(1− x)2

=
d
dx

(
1

1− x

)
=

d
dx

( ∞∑
n=0

xn
)

=

∞∑
n=1

nxn−1

Since the original power series had a radius of convergence of R = 1 the
derivative, and hence g(x), will also have a radius of convergence of R = 1.

Example 9.8.10 Integrating a Power Series
Find a power series representation for h(x) = ln(5−x) and determine its radius
of convergence.

SOLUTION In this case we need the fact that∫
1

5− x
dx = − ln(5− x).

Recall that we found a power series representation for
1

5− x
in Example 9.8.7.
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We now have

ln(5− x) = −
∫

1
5− x

dx

= −
∫ ∞∑

n=0

xn

5n+1 dx where |x| < 5

= C−
∞∑
n=0

xn+1

(n+ 1)5n+1 where |x| < 5

We can find the constant of integration, C, by substituting in a value of x. A
good choice is x = 0 as the series is usually easy to evaluate there.

ln(5− 0) = C−
∞∑
n=0

0n+1

(n+ 1)5n+1

ln(5− 0) = C

So, the final answer is,

ln(5− x) = ln(5)−
∞∑
n=0

xn+1

(n+ 1)5n+1 ,

and the radius of convergence is 5. Notice that x = −5 allows for convergence
so the interval of convergence is [−5, 5).
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Exercises 9.8
Terms and Concepts
1. We adopt the convention that x0 = , regardless of

the value of x.
2. What is the difference between the radius of convergence

and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the

radius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the

radius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5–8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9–28, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

25.
∞∑
n=1

(3x− 2)n

n3n

26.
∞∑
n=1

xn

5nn5

27.
∞∑
n=2

xn

(ln n)n

28.
∞∑
n=1

(−1)n x2n+1

(2n+ 1)!

In Exercises 29–32, write the following functions as a series and
give the radius of convergence.

29. f(x) = x
1− 8x

30. f(x) = 6
1+ 7x4

31. f(x) = x3

3− x2

32. f(x) = 3x2

5− 2 3
√
x

In Exercises 33–44, a function f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver‐
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con‐

vergence.

33.
∞∑
n=0

nxn
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34.
∞∑
n=1

xn

n

35.
∞∑
n=0

( x
2

)n

36.
∞∑
n=0

(−3x)n

37.
∞∑
n=0

(−1)nx2n

(2n)!

38.
∞∑
n=0

(−1)nxn

n!

39.
∞∑
n=0

nxn

40.
∞∑
n=1

xn

n

41.
∞∑
n=0

( x
2

)n

42.
∞∑
n=0

(−3x)n

43.
∞∑
n=0

(−1)nx2n

(2n)!

44.
∞∑
n=0

(−1)nxn

n!

45. (a) Use differentiation to find a power series represen‐
tation for f(x) =

1
(1+ x)2

. What is the radius of

convergence?
(b) Use part (a) to find a power series for f(x) =

1
(1+ x)3

.

(c) Use part (b) to find a power series for f(x) =
x2

(1+ x)3
.

46. Suppose that
∞∑
n=0

cnxn converges for x = −3 and diverges

when x = 7. What can you say about the convergence or
divergence of the following series?

(a)
∞∑
n=0

cn

(b)
∞∑
n=0

cn9n

(c)
∞∑
n=0

cn(−2)n

(d)
∞∑
n=0

(−1)ncn8n

In Exercises 47–53, find a power series representation for the
function and determine the radius of convergence.

47. f(x) = ln(3− x)

48. f(x) = x
(1+ 9x)2

49. f(x) = ln
(
1+ x
1− x

)
50. f(x) = tan−1 x

51. f(x) = x2 tan−1(x3)

52. f(x) = 1+ x
(1− x)2

53. f(x) =
(

x
2− x

)3
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9.9 Taylor Polynomials

9.9 Taylor Polynomials

Consider a function y = f(x) and a point
(
c, f(c)

)
. The derivative, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).

y = f(x)

y = p1(x)
−4 −2 2 4

−5

5

x

y

f(0) = 2 f ′′′(0) = −1

f ′(0) = 1 f (4)(0) = −12

f ′′(0) = 2 f (5)(0) = −19

Figure 9.9.1: Plotting y = f(x) and a
table of derivatives of f evaluated at 0.

In Figure 9.9.1, we see a function y = f(x) graphed. The table below the
graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximation is that the tangent line only match‐
es the slope of f; it does not, for instance, match the concavity of f. We can
find a polynomial, p2(x), that does match the concavity without much difficulty,
though. The table in Figure 9.9.1 gives the following information:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properties. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an initial‐value problem. We can solve this using the tech‐
niques first described in Section 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva‐
tive of p2 is constant.

y = p2(x)

y = p4(x)
−4 −2 2 4

−5

5

x

y

Figure 9.9.2: Plotting f, p2, and p4.

If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have
determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our initial values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This function is plotted with f in
Figure 9.9.2.

We can repeat this approximation process by creating polynomials of higher
degree that matchmore of the derivatives of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivatives of f. Figure 9.9.2 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four derivatives at 0match
those of f. (Using the table in Figure 9.9.1, start with p(4)4 (x) = −12 and solve
the related initial‐value problem.)

y = p13(x)

−4 −2 2 4

−5

5

x

y

Figure 9.9.3: Plotting f and p13.

As we use more and more derivatives, our polynomial approximation to f
gets better and better. In this example, the interval on which the approximation
is “good” gets bigger and bigger. Figure 9.9.3 shows p13(x); we can visually affirm
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that this polynomial approximates f very well on [−2, 3]. The polynomial p13(x)
is fairly complicated:

16901x13
6227020800+

13x12
1209600−

1321x11
39916800−

779x10
1814400−

359x9
362880+

x8
240+

139x7
5040 + 11x6

360 − 19x5
120 − x4

2 − x3
6 +x2+x+2.

Thepolynomialswehave created are examples of Taylor polynomials, named
after the British mathematician Brook Taylor who made important discoveries
about such functions. While we created the above Taylor polynomials by solving
initial‐value problems, it can be shown that Taylor polynomials follow a general
pattern that makes their formation much more direct. This is described in the
following definition.

Definition 9.9.1 Taylor Polynomial, Maclaurin Polynomial
Let f be a function whose first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

=

n∑
k=0

f (k)(c)
k!

(x− c)k.

2. A special case of the Taylor polynomial is the Maclaurin polynomial, where c = 0. That is,
theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn

=

n∑
k=0

f (k)(0)
k!

xk.

Note: The summations in this defini‐
tion use the convention that x0 = 1
even when x = 0 and that f(0) = f.
They also use the definition that
0! = 1.

Generally, we order the terms of a polynomial to have decreasing degrees,
and that is how we began this section. This definition, and the rest of this chap‐
ter, reverses this order to reflect the greater importance of the lower degree
terms in the polynomials that we will be finding.

Watch the video:
Taylor Polynomial to Approximate a Function, Ex 3
at
https://youtu.be/UINFWG0ErSA
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9.9 Taylor Polynomials

We will practice creating Taylor and Maclaurin polynomials in the following
examples.

Example 9.9.1 Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SOLUTION

f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1

...
...

f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 9.9.4: The derivatives of f(x) = ex

evaluated at x = 0.

1. We start with creating a table of the derivatives of ex evaluated at x = 0.
In this particular case, this is relatively simple, as shown in Figure 9.9.4. By
the definition of the Maclaurin polynomial, we have

pn(x) =
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=0

1
k!
xk.

2. Using our answer from part 1, we have

p5(x) = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straightforward to evaluate p5(1):

y = p5(x)
−2 2

5

10

x

y

Figure 9.9.5: A plot of f(x) = ex and its
5th degree Maclaurin polynomial p5(x).

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

This is an error of about 0.0016, or 0.06% of the true value.
A plot of f(x) = ex and p5(x) is given in Figure 9.9.5.

Example 9.9.2 Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

SOLUTION

1. We begin by creating a table of derivatives of ln x evaluated at x = 1.
While this is not as straightforward as it was in the previous example, a
pattern does emerge, as shown in Figure 9.9.6.

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2

f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...

f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 9.9.6: Derivatives of ln x evaluat‐
ed at x = 1.
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Using Definition 9.9.1, we have

pn(x) =
n∑

k=0

f (k)(c)
k!

(x− c)k =
n∑

k=1

(−1)k+1

k
(x− 1)k.

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3

− 1
4
(1.5− 1)4 +

1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

y = ln x

y = p6(x)

1 2 3

−4

−2

2

x

y

Figure 9.9.7: A plot of y = ln x and its 6th
degree Taylor polynomial at x = 1.

This is a good approximation as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 9.9.7 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3

− 1
4
(2− 1)4 +

1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximation is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 9.9.7 shows that p6(x) provides
less accurate approximations of ln x as x gets close to 0 or 2.

y = ln x

y = p20(x)

1 2 3

−4

−2

2

x

y

Figure 9.9.8: A plot of y = ln x and its
20th degree Taylor polynomial at x = 1.

Surprisingly enough, even the 20th degree Taylor polynomial fails to app‐
roximate ln x for x > 2, as shown in Figure 9.9.8. We’ll soon discuss why
this is.
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9.9 Taylor Polynomials

Taylor polynomials are used to approximate functions f(x) in mainly two sit‐
uations:

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the ratio of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of computing cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of computing
such values using only operations usually hard‐wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but information about its derivatives is known.
This occurs more often than one might think, especially in the study of
differential equations.

Note: Even though Taylor polyno‐
mials could be used in calculators
and computers to calculate values of
trigonometric functions, in practice
they generally aren’t. Other more
efficient and accurate methods have
been developed, such as the CORDIC
algorithm.

In both situations, a critical piece of information to have is “How good is my
approximation?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximation is?

We had the same problem with Numerical Integration. Theorem 8.7.1 pro‐
vided bounds on the error when using, say, Simpson’s Rule to approximate a
definite integral. These bounds allowed us to determine that, for example, us‐
ing 10 subintervals provided an approximation within ±.01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

Theorem 9.9.1 Taylor’s Theorem

1. Let f be a function whose (n+ 1)th derivative exists on an open in‐
terval I and let c be in I. Then, for each x in I, there exists zx between
x and c such that

Rn(x) = f(x)−
n∑

k=0

f (k)(c)
k!

(x− c)k =
f (n+1)(zx)
(n+ 1)!

(x− c)n+1.

2. |Rn(x)| ≤
maxz

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
|x− c|n+1, where z is between x and c.

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximation. The second part gives bounds on how big that error
can be. If the (n+ 1)th derivative is large, the error may be large; if x is far from
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c, the error may also be large. However, the (n + 1)! term in the denominator
tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of
ln 1.5 and ln 2 made in Example 9.9.2.

Example 9.9.3 Finding error bounds of a Taylor polynomial
Use Theorem 9.9.1 to find error bounds when approximating ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 9.9.2.

SOLUTION

1. We start with the approximation of ln 1.5 with p6(1.5). Taylor’s Theorem
references max

∣∣f (n+1)(z)
∣∣. In our situation, this is asking “How big can

the 7th derivative of y = ln x be on the interval [1, 1.5]?” The seventh
derivative is y = 6!/x7. The largest absolute value it attains on I is 720.
Thus we can bound the error as:

|R6(1.5)| ≤
max

∣∣f (7)(z)∣∣
7!

|1.5− 1|7

≤ 720
5040

· 1
27

≈ 0.001.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778 (or 0.2%), which is less
than our bound of 0.001. This affirms Taylor’s Theorem; the theorem
states that our approximation would be within about one thousandth of
the actual value, whereas the approximation was actually closer.

2. The maximum value of the seventh derivative of f on [1, 2] is again 720 (as
the largest values come at x = 1). Thus

|R6(2)| ≤
max

∣∣f (7)(z)∣∣
7!

|2− 1|7

≤ 720
5040

· 17

≈ 0.15.

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.15 of the correct answer. As
p6(2) ≈ 0.61667, our error estimate guarantees that the actual value of
ln 2 is somewhere between 0.46 and 0.76. These bounds are not particu‐
larly useful.
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In reality, our approximation was only off by about 0.07 (or 11%). How‐
ever, we are approximating ostensibly because we do not know the real
answer. In order to be assured that we have a good approximation, we
would have to resort to using a polynomial of higher degree.

We practice again. This time, we use Taylor’s theorem to find n that guaran‐
tees our approximation is within a certain amount.

Example 9.9.4 Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

SOLUTION Following Taylor’s theorem, we need bounds on the size of
the derivatives of f(x) = cos x. In the case of this trigonometric function, this is
easy. All derivatives of cosine are± sin x or± cos x. In all cases, these functions
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequalities:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

|2− 0|n+1 ≤ 0.001

1
(n+ 1)!

· 2n+1 ≤ 0.001

We find an n that satisfies this last inequality with trial‐and‐error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0

f (4)(x) = cos x ⇒ f (4)(0) = 1

f (5)(x) = − sin x ⇒ f (5)(0) = 0

f (6)(x) = − cos x ⇒ f (6)(0) = −1

f (7)(x) = sin x ⇒ f (7)(0) = 0

f (8)(x) = cos x ⇒ f (8)(0) = 1

f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 9.9.9: A table of the derivatives of
f(x) = cos x evaluated at x = 0.

We now set out to compute p9(x). We again need a table of the derivatives
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 9.9.9.
Notice how the derivatives, evaluated at x = 0, follow a certain pattern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are creating a Maclaurin
polynomial, and:

p8(x) =
8∑

k=0

f (k)(0)
k!

xk = 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.
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y = p8(x)

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

x

y

f(x) = cos x

Figure 9.9.10: A graph of f(x) = cos x
and its degree 8 Maclaurin polynomial.

Our error bound guarantees that this approximation is within 0.001 of the cor‐
rect answer. Technology shows us that our approximation is actually within
about 0.0003 (or 0.07%) of the correct answer.

Figure 9.9.10 shows a graph of y = p8(x) and y = cos x. Note how well the
two functions agree on about (−π, π).

Example 9.9.5 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximating
√
3 with p4(3).

SOLUTION

1. We begin by evaluating the derivatives of f at x = 4. This is done in Fig‐
ure 9.9.11. These values allow us to form the Taylor polynomial p4(x):

f(x) =
√
x ⇒ f(4) = 2

f ′(x) = 1
2
√
x

⇒ f ′(4) = 1
4

f ′′(x) = −1
4x3/2

⇒ f ′′(4) = −1
32

f ′′′(x) = 3
8x5/2

⇒ f ′′′(4) = 3
256

f (4)(x) = −15
16x7/2

⇒ f (4)(4) = −15
2048

Figure 9.9.11: A table of the derivatives
of f(x) =

√
x evaluated at x = 4.

p4(x) =

2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. The largest value the fifth derivative of f(x) =
√
x takes on [3, 4] is when

x = 3, at about 0.0234. Thus

|R4(3)| ≤
0.0234

5!
|3− 4|5 ≈ 0.00019.

y =
√
x

y = p4(x)

5 10

1

2

3

x

y

Figure 9.9.12: A graph of f(x) =
√
x and

its degree 4 Taylor polynomial at x = 4.

This shows our approximation is accurate to at least the first 2 places after
the decimal. It turns out that our approximation has an error of 0.00007,
or 0.004%. A graph of f(x) =

√
x and p4(x) is given in Figure 9.9.12. Note

how the two functions are nearly indistinguishable on (2, 7).

Most of this chapter has been devoted to the study of infinite series. This
section has stepped aside from this study, focusing instead on finite summation
of terms. In the next section, we will combine power series and Taylor polyno‐
mials into Taylor Series, where we represent a function with an infinite series.
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Exercises 9.9
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Maclaurin polynomial?
2. T/F: In general, pn(x) approximates f(x) better and better

as n gets larger.
3. For some function f(x), the Maclaurin polynomial of de‐

gree 4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?
4. For some function f(x), the Maclaurin polynomial of de‐

gree 4 is p4(x) = 6+3x−4x2+5x3−7x4. What is f ′′′(0)?

Problems
In Exercises 5–12, find the Maclaurin polynomial of degree n
for the given function.

5. f(x) = e−x, n = 3
6. f(x) = sin x, n = 8
7. f(x) = x · ex, n = 5
8. f(x) = tan x, n = 6
9. f(x) = e2x, n = 4

10. f(x) = 1
1− x

, n = 4

11. f(x) = 1
1+ x

, n = 4

12. f(x) = 1
1+ x

, n = 7

In Exercises 13–20, find the Taylor polynomial of degree n, at
x = c, for the given function.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1
15. f(x) = cos x, n = 6, c = π/4
16. f(x) = sin x, n = 5, c = π/6

17. f(x) = 1
x
, n = 5, c = 2

18. f(x) = 1
x2
, n = 8, c = 1

19. f(x) = 1
x2 + 1

, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21–24, approximate the function value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de‐
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de‐
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.
24. Approximate ln 1.5 with the Taylor polynomial of degree 3

centered at x = 1.

Exercises 25–28 ask for an n to be found such that pn(x) ap‐
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001 of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.
27. Find n such that the Maclaurin polynomial of degree n of

f(x) = cos x approximates cos π/3 within 0.0001 of the
actual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates sin π within 0.0001 of the actual
value.

In Exercises 29–34, find the xn termof the indicated Taylor poly‐
nomial.

29. Find a formula for the xn term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the xn term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the xn term of theMaclaurin polynomial
for f(x) = sin x.

32. Find a formula for the xn term of theMaclaurin polynomial
for f(x) = 1

1− x
.

33. Find a formula for the xn term of theMaclaurin polynomial
for f(x) = 1

1+ x
.

34. Find a formula for the xn term of the Taylor polynomial for
f(x) = ln x centered at c = 1.

In Exercises 35–36, approximate the solution to the given dif‐
ferential equation with a degree 4 Maclaurin polynomial.

35. y′ = y; y(0) = 1

36. y′ = 2
y
; y(0) = 1
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9.10 Taylor Series

In Section 9.8, we showed how certain functions can be represented by a power
series function. In Section 9.9, we showed how we can approximate functions
with polynomials, given that enough derivative information is available. In this
section we combine these concepts: if a function f(x) is infinitely differentiable,
we show how to represent it with a power series function.

Definition 9.10.1 Taylor and Maclaurin Series
Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Setting c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

Watch the video:
Taylor and Maclaurin Series — Example 2 at
https://youtu.be/Os8OtXFBLkY

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the latter
is a series, a summation of an infinite set of terms. When creating the Taylor
polynomial of degree n for a function f(x) at x = c, we needed to evaluate f, and
the first n derivatives of f, at x = c. When creating the Taylor series of f, we need
to find a pattern that describes the nth derivative of f at x = c. We demonstrate
this in the next two examples.

Notes:
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Example 9.10.1 The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SOLUTION In Example 9.9.4 we found the 8th degree Maclaurin poly‐
nomial of cos x. In doing so, we created the table shown in Figure 9.10.1.

f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0

f (4)(x) = cos x ⇒ f (4)(0) = 1

f (5)(x) = − sin x ⇒ f (5)(0) = 0

f (6)(x) = − cos x ⇒ f (6)(0) = −1

f (7)(x) = sin x ⇒ f (7)(0) = 0

f (8)(x) = cos x ⇒ f (8)(0) = 1

f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 9.10.1: A table of the derivatives
of f(x) = cos x evaluated at x = 0.

No‐
tice how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible by 4, and
f (n)(0) = −1 when n is even but not divisible by 4. Thus the Maclaurin series
of cos x is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summation. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

Example 9.10.2 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

SOLUTION Figure 9.10.2 shows the nth derivative of ln x evaluated at
x = 1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what distinguishes Taylor series from Taylor polynomials;
we are very interested in finding a pattern for the nth term, not just finding a
finite set of coefficients for a polynomial.

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2

f (4)(x) = −6/x4 ⇒ f (4)(1) = −6

f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...

f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 9.10.2: Derivatives of ln x evaluat‐
ed at x = 1.

Since f(1) = ln 1 = 0, we skip the
first term and start the summation with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

It is important to note that Definition 9.10.1 defines a Taylor series given a
function f(x); however, we cannot yet state that f(x) is equal to its Taylor series.
We will find that “most of the time” they are equal, but we need to consider the
conditions that allow us to conclude this.

Theorem 9.9.1 states that the error between a function and its nth‐degree
Taylor polynomial is Rn(x), where

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
|x− c|n+1

.
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If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con‐
clude that the function is equal to its Taylor series expansion.

Theorem 9.10.1 Function and Taylor Series Equality
Let f(x) have derivatives of all orders at x = c, let Rn(x) be as stated in
Theorem 9.9.1, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

Example 9.10.3 Establishing equality of a function and its Taylor series
Show that, for all x, f(x) = cos x is equal to its Maclaurin series as found in
Example 9.10.1.

SOLUTION Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
|x|n+1

.

Since all derivatives of cos x are± sin x or± cos x, whosemagnitudes are bound‐
ed by 1, we can state

|Rn(x)| ≤
1

(n+ 1)!
|x|n+1

which implies

− |x|n+1

(n+ 1)!
≤ Rn(x) ≤

|x|n+1

(n+ 1)!
.

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Applying the Squeeze Theorem to our last inequal‐

ity, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x.

It is natural to assume that a function is equal to its Taylor series on the series’
interval of convergence, but this is not necessarily the case. In order to properly
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establish equality, one must use Theorem 9.10.1. This is a bit disappointing, as
we developed beautiful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be cumbersome as it deals
with high order derivatives of the function.

There is good news. A function f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analytic function, andmost, if not
all, functions that we encounter within this course are analytic functions. Gener‐
ally speaking, any function that one creates with elementary functions (polyno‐
mials, exponentials, trigonometric functions, etc.) that is not piecewise defined
is probably analytic. For most functions, we assume the function is equal to its
Taylor series on the series’ interval of convergence and only use Theorem 9.10.1
when we suspect something may not work as expected. The converse is also
true: if a function is equal to some power series on an interval, then that power
series is the Taylor series of the function.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 9.10.4 The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SOLUTION When k is a positive integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a positive integer are known as the binomial co‐
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representation of

this function would give a useful way of approximating
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivatives of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n ...

f (n)(0) = k(k− 1) · · ·
(
k− (n− 1)

)
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Thus the Maclaurin series for f(x) = (1+ x)k is

1+kx+
k(k− 1)

2!
x2+

k(k− 1)(k− 2)
3!

x3+· · ·+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn+· · ·

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,

we apply the Ratio Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣ k(k−1)···(k−n)
(n+1)! xn+1

∣∣∣∣∣∣∣ k(k−1)···
(
k−(n−1)

)
n! xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ k− n
n+ 1

x
∣∣∣∣

= |x| .

The series converges absolutely when the limit of the Ratio Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is (−1, 1]. If k ≤ −1, the interval of
convergence is (−1, 1).

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

While we appreciate the mathematical beauty of Taylor series (which is rea‐
son enough to study them), there are practical uses as well. They provide a
valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 9.10.1 (on the following page) we give a table of the Maclaurin
series of a number of common functions. We then give a theorem about the
“algebra of power series,” that is, how we can combine power series to create
power series of new functions. This allows us to find the Taylor series of func‐
tions like f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 9.10.1). Knowing that tan−1(1) = π/4, we

Notes:
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can use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this particular expansion of π converges very slowly. The first 100
terms approximate π as 3.13159, which is not particularly good.

Key Idea 9.10.1 Important Maclaurin Series Expansions
Function and Series First Few Terms Interval of

Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln(x+ 1) =
∞∑
n=1

(−1)n+1 xn

n
x− x2

2
+

x3

3
− · · · (−1, 1]

1
1− x

=

∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · ·


(−1, 1) k ≤ −1
(−1, 1] −1 < k < 0
[−1, 1] 0 < k

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]
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Theorem 9.10.2 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R,

and let h(x) be continuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0
bnxn

)
=

∞∑
n=0

(
a0bn + a1bn−1 + · · ·+ anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Example 9.10.5 Combining Taylor series
Write out the first 3 terms of the Maclaurin Series for f(x) = ex cos x using Key
Idea 9.10.1 and Theorem 9.10.2.

SOLUTION Key Idea 9.10.1 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 9.10.2, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the left:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·
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Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluating all the neces‐
sary derivatives of ex cos x and computing the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x.

Example 9.10.6 Creating new Taylor series
Use Theorem 9.10.2 to create the Taylor series for y = sin(x2) centered at x = 0
and a series for y = ln(

√
x) centered at c = 1.

SOLUTION Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply substitute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n
x4n+2

(2n+ 1)!
= x2− x6

3!
+
x10

5!
− x14

7!
· · · .

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln(x + 1) given in Key Idea 9.10.1 is centered at
x = 0, so we can center the series for ln(

√
x) at x = 1. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

Note: In Example 9.10.6, one could
create a series for ln(

√
x) by sim‐

ply recognizing that ln(
√
x) =

ln(x1/2) = 1/2 ln x, and hence mul‐
tiplying the Taylor series for ln x by
1/2. This example was chosen to
demonstrate other aspects of series,
such as the fact that the interval of
convergence changes.

we substitute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series because of the
√
x, it is a series that allows

us to study the function ln(
√
x). Since the interval of convergence of ln x is (0, 2],

and the range of
√
x on (0, 4] is (0, 2], the interval of convergence of this series

expansion of ln(
√
x) is (0, 4].
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Example 9.10.7 Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

SOLUTION We learned, when studying Numerical Integration, that e−x2

does not have an antiderivative expressible in terms of elementary functions.
This means any definite integral of this function must have its value approximat‐
ed, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

We use Theorem 9.8.3 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the antiderivative of e−x2 ; while we can write it out as a series, we can‐
not write it out in terms of elementary functions. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this antiderivative; substituting 1 and 0 for x and sub‐

tracting gives∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
− · · · .

Summing the 5 terms shown above gives the approximation of 0.74749. Since
this is an alternating series, we can use the Alternating Series Approximation
Theorem, (Theorem 9.5.3), to determine how accurate this approximation is.
The next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our
approximation is within 0.00075758 of the actual value of the integral. This is
arguably much less work than using Simpson’s Rule to approximate the value of
the integral.
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Another advantage to using Taylor series instead of Simpson’s Rule is formak‐
ing subsequent approximations. We found in Example 8.7.7 that the error in us‐

ing Simpson’s Rule for
∫ 1

0
e−x2 dxwith four intervals was 0.00026. If we wanted

to decrease that error, we would need to use more intervals, essentially starting
the problem over. Using a Taylor series, if we wanted a more accurate approxi‐
mation, we can just subtract the next term 1/(11 · 5!) to get an approximation
of 0.7467, with an error of at most 1/(13 · 6!) ≈ 0.0001.

Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 9.10.1, can be difficult. What
if the coefficients are given in their reduced form; how could we still recover the
function?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

Definition 9.10.1 states that each term of the Taylor expansion of a function in‐
cludes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the pattern bn = 2n, allowing us
to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!
xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponential
function.

This chapter introduced sequences, which are ordered lists of numbers, fol‐
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud‐
ied tests for convergence, then ended the chapter with a formal way of defining
functions based on series. Such “series‐defined functions” are a valuable tool in
solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using functions of the form y = f(x). Curves created by these new
methods can be beautiful, useful, and important.

Notes:
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Exercises 9.10
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Taylor series?
2. What theoremmustweuse to show that a function is equal

to its Taylor series?

Problems
Key Idea 9.10.1 gives the nth term of the Taylor series of com‐
mon functions. In Exercises 3–6, verify the formula given in
the Key Idea by finding the first few terms of the Taylor series
of the given function and identifying a pattern.

3. f(x) = ex; c = 0
4. f(x) = sin x; c = 0
5. f(x) = 1/(1− x); c = 0
6. f(x) = tan−1 x; c = 0

In Exercises 7–12, find a formula for the nth term of the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a pattern. (The formulas
for several of these are found in Key Idea 9.10.1; show work
verifying these formula.)

7. f(x) = cos x; c = π/2
8. f(x) = 1/x; c = 1
9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0
11. f(x) = x/(x+ 1); c = 1
12. f(x) = sin x; c = π/4

In Exercises 13–16, show that the Taylor series for f(x), as given
in Key Idea 9.10.1, is equal to f(x) by applying Theorem 9.10.1;
that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln(x+ 1) (show equality only on (0, 1)).
16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17–20, use the Taylor series given in Key
Idea 9.10.1 to verify the given identity.

17. cos(−x) = cos x
18. sin(−x) = − sin x
19. d

dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21–24, write out the first 5 terms of the Binomial
series with the given k‐value.

21. k = 1/2
22. k = −1/2
23. k = 1/3
24. k = 4

In Exercises 25–30, use the Taylor series given in Key
Idea 9.10.1 to create the Taylor series of the given functions.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1(x/2)
29. f(x) = ex sin x (only find the first non‐zero 4 terms)
30. f(x) = (1 + x)1/2 cos x (only find the first non‐zero 4

terms)
In Exercises 31–32, approximate the value of the given definite
integral by using the first 4 nonzero terms of the integrand’s
Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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10.0 Chapter Prerequisites — Conic Sections

The material in this section provides a basic review of and practice problems for
pre‐calculus skills essential to your success in Calculus. You should take time to
review this section and work the suggested problems (checking your answers
against those in the back of the book). Since this content is a pre‐requisite for
Calculus, reviewing andmastering these skills are considered your responsibility.
This means thatminimal, and in some cases no, class timewill be devoted to this
section. When you identify areas that you need help with we strongly urge you
to seek assistance outside of class from your instructor or other student tutoring
service.

The ancient Greeks recognized that interesting shapes can be formed by in‐
tersecting a plane with a double napped cone (i.e., two identical cones placed
tip‐to‐tip as shown in the following figures). As these shapes are formed as sec‐
tions of conics, they have earned the official name “conic sections.”

The three “most interesting” conic sections are given in the top row of Fig‐
ure 10.0.1. They are the parabola, the ellipse (which includes circles) and the
hyperbola. In each of these cases, the plane does not intersect the tips of the
cones (usually taken to be the origin).

Parabola Ellipse Circle Hyperbola

Point Line Crossed Lines

Figure 10.0.1: Conic Sections
When the plane does contain the origin, three degenerate cones can be

formed as shown the bottom row of Figure 10.0.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.



Chapter 10 Curves in the Plane

While the above geometric constructs define the conics in an intuitive, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a function. It can be shown that
all conics can be defined by the general second‐degree equation

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0.

While this algebraic definition has its uses, most find another geometric perspec‐
tive of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
satisfy a certain distance property. These distance properties can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
function.

Parabolas

Definition 10.0.1 Parabola
A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Directrix

Focus

Vertex

}
p}
p

(x, y)d

d

Ax
is
of

Sy
m
m
et
ry

Figure 10.0.2: Illustrating the definition
of the parabola and establishing an alge‐
braic formula.

Figure 10.0.2 illustrates this definition. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the portion of the parabola on one side of
this line is the mirror‐image of the portion on the opposite side.

The geometric definition of the parabola and distance formula can be used
to derive the quadratic function whose graph is a parabola with vertex at the
origin.

y =
1
4p

x2.

Applying transformations of functions we get the following standard form of the
parabola.

Notes:
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Key Idea 10.0.1 General Equation of a Parabola
1. Vertical Axis of Symmetry: The equation of the parabola with ver‐

tex at (h, k), directrix y = k−p, and focus at (h, k+p) in standard
form is

y =
1
4p

(x− h)2 + k.

2. Horizontal Axis of Symmetry: The equation of the parabola with
vertex at (h, k), directrix x = h − p, and focus at (h + p, k) in
standard form is

x =
1
4p

(y− k)2 + h.

Note: p is not necessarily a positive number.

Example 10.0.1 Finding the equation of a parabola
Give the equation of the parabola with focus at (1, 2) and directrix at y = 3.

SOLUTION

5

−6

−4

−2

2

x

y

Figure 10.0.3: The parabola described in
Example 10.0.1.

The vertex is located halfway between the focus and direc‐
trix, so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 10.0.1 we have
the equation of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

The parabola is sketched in Figure 10.0.3.

Ellipses

Definition 10.0.2 Ellipse
An ellipse is the locus of all pointswhose sumof distances from twofixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil tight against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 10.0.4.

d1
d2

d1 + d2 = constant

Figure 10.0.4: Illustrating the construc‐
tion of an ellipse with pins, pencil and
string.

We can again find an algebraic equation for an ellipse using this geometric
definition.

x2

a2
+

y2

b2
= 1.

Notes:
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Chapter 10 Curves in the Plane

As shown in Figure 10.0.5, the values of a and b have meaning. In general,
the two foci of an ellipse lie on the major axis of the ellipse, and the midpoint
of the segment joining the two foci is the center. The major axis intersects the
ellipse at two points, each of which is a vertex. The line segment through the
center and perpendicular to the major axis is theminor axis. The “constant sum
of distances” that defines the ellipse is the length of the major axis, i.e., 2a.

Major axis Minor axis

Vertices Foci

︸ ︷︷ ︸
a

︸ ︷︷ ︸
c

b



Figure 10.0.5: Labeling the significant
features of an ellipse.

Allowing for the shifting of the ellipse gives the following standard equations.

Key Idea 10.0.2 Standard Equation of the Ellipse
The equation of an ellipse centered at (h, k)with major axis of length 2a
and minor axis of length 2b in standard form is:

1. Horizontal major axis: (x− h)2

a2
+

(y− k)2

b2
= 1.

2. Vertical major axis: (x− h)2

b2
+

(y− k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

Example 10.0.2 Finding the equation of an ellipse
Find the general equation of the ellipse graphed in Figure 10.0.6.

−6 −4 −2 2 4 6

−4

−2

2

4

6

x

y

Figure 10.0.6: The ellipse used in Exam‐
ple 10.0.2.

SOLUTION The center is located at (−3, 1). The distance from the cen‐
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equation of the ellipse is

(x+ 3)2

4
+

(y− 1)2

25
= 1.

Example 10.0.3 Graphing an ellipse
Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.

SOLUTION It is simple to graph an ellipse once it is in standard form. In
order to put the given equation in standard form, we must complete the square
with both the x and y terms. We first rewrite the equation by regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Notes:
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10.0 Chapter Prerequisites — Conic Sections

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4
4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y+ 4− 4) = −4
4
(
(x− 1)2 − 1

)
+ 9
(
(y− 2)2 − 4

)
= −4

4(x− 1)2 − 4+ 9(y− 2)2 − 36 = −4
4(x− 1)2 + 9(y− 2)2 = 36
(x− 1)2

9
+

(y− 2)2

4
= 1.

−2 −1 1 2 3 4
−1

1

2

3

4

x

y

Figure 10.0.7: Graphing the ellipse in Ex‐
ample 10.0.3.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2; the
major axis is horizontal, so the vertices are located at (−2, 2) and (4, 2). We
find c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along the major axis,

approximately 2.24 units from the center, at (1± 2.24, 2). This is all graphed in
Figure 10.0.7.

Hyperbolas
The definition of a hyperbola is very similar to the definition of an ellipse; we
essentially just change the word “sum” to “difference.”

Definition 10.0.3 Hyperbola
A hyperbola is the locus of all points where the absolute value of the dif‐
ference of distances from twofixed points, each a focus of the hyperbola,
is constant.

We do not have a convenient way of visualizing the construction of a hyper‐
bola as we did for the ellipse. The geometric definition does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

Transverse
axis

ax
is

Co
nj
ug
at
e

FociVertices

a︷ ︸︸ ︷ c︷ ︸︸ ︷

Figure 10.0.8: Labeling the significant
features of a hyperbola.

The two foci lie on the transverse axis of the hyperbola; the midpoint of the
line segment joining the foci is the center of the hyperbola. The transverse axis
intersects the hyperbola at two points, each a vertex of the hyperbola. The line
through the center and perpendicular to the transverse axis is the conjugate axis.
This is illustrated in Figure 10.0.8. It is easy to show that the constant difference
of distances used in the definition of the hyperbola is the distance between the
vertices, i.e., 2a.

Notes:
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Chapter 10 Curves in the Plane

Key Idea 10.0.3 Standard Equation of a Hyperbola
The equation of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y− k)2

b2
= 1.

2. Vertical Transverse Axis:
(y− k)2

a2
− (x− h)2

b2
= 1.

The vertices are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas−5 5

−2

2

x

y

Figure 10.0.9: Graphing the hyperbola
x2
9 − y2

1 = 1 along with its asymptotes,
y = ±x/3.

Consider the hyperbola x2
9 − y2

1 = 1. Solving for y, we find y = ±
√

x2/9− 1. As
x grows large, the “−1” part of the equation for y becomes less significant and
y ≈ ±

√
x2/9 = ±x/3. That is, as x gets large, the graph of the hyperbola looks

very much like the lines y = ±x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 10.0.9.

h − a h + ah

k − b

k

k + b

x

y

Figure 10.0.10: Using the asymptotes of
a hyperbola as a graphing aid.

This is a valuable tool in sketching. Given the equation of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 10.0.10 for an example with a horizontal transverse axis.) The diagonals
of the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is vertical, their slopes are±a/b. This
gives equations:

Horizontal
Transverse Axis

Vertical
Transverse Axis

y = ±b
a
(x− h) + k y = ±a

b
(x− h) + k.

−5 5

−5

5

10

x

y

Figure 10.0.11: Graphing the hyperbola
in Example 10.0.4.

Example 10.0.4 Graphing a hyperbola

Sketch the hyperbola given by
(y− 2)2

25
− (x− 1)2

4
= 1.

SOLUTION The hyperbola is centered at (1, 2); a = 5 and b = 2. In
Figure 10.0.11 we draw the prescribed rectangle centered at (1, 2) along with
the asymptotes defined by its diagonals. The hyperbola has a vertical transverse
axis, so the vertices are located at (1, 7) and (1,−3). This is enough to make a
good sketch.

We also find the location of the foci: as c2 = a2+b2, we have c =
√
29 ≈ 5.4.

Thus the foci are located at (1, 2± 5.4) as shown in the figure.

Notes:
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−4 −2 2 4

−10

10

x

y

Figure 10.0.12: Graphing the hyperbola
in Example 10.0.5.

Example 10.0.5 Graphing a hyperbola
Sketch the hyperbola given by 9x2 − y2 + 2y = 10.

SOLUTION Wemust complete the square to put the equation in general
form. (We recognize this as a hyperbola since it is a general quadratic equation
and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10
9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y+ 1− 1) = 10
9x2 −

(
(y− 1)2 − 1

)
= 10

9x2 − (y− 1)2 = 9

x2 − (y− 1)2

9
= 1

We see the hyperbola is centered at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 10.0.12
along with the asymptotes of the hyperbola. The vertices are located at (±1, 1).
We have c =

√
10 ≈ 3.2, so the foci are located at (±3.2, 1) as shown in Fig‐

ure 10.0.12.

This chapter explores curves in the plane, in particular curves that cannot
be described by functions of the form y = f(x). In this section, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
sections, we will learn completely new ways of describing curves in the plane,
using parametric equations and polar coordinates, then study these curves using
calculus techniques.

Notes:
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Exercises 10.0
Problems
In Exercises 1–8, find the equation of the parabola defined by
the given information. Sketch the parabola.

1. Focus: (3, 2); directrix: y = 1
2. Focus: (−1,−4); directrix: y = 2
3. Focus: (1, 5); directrix: x = 3
4. Focus: (1/4, 0); directrix: x = −1/4
5. Focus: (1, 1); vertex: (1, 2)
6. Focus: (−3, 0); vertex: (0, 0)
7. Vertex: (0, 0); directrix: y = −1/16
8. Vertex: (2, 3); directrix: x = 4

In Exercises 9–10, sketch the ellipse defined by the given equa‐
tion. Label the center, foci and vertices.

9. (x− 1)2

3
+

(y− 2)2

5
= 1

10. 1
25

x2 + 1
9
(y+ 3)2 = 1

In Exercises 11–12, find the equation of the ellipse shown in
the graph.

11.

−4 −2 2

2

4

x

y

12.
−2 2 4

−2

2

x

y

In Exercises 13–16, write the equation of the given ellipse in
standard form.

13. x2 − 2x+ 2y2 − 8y = −7
14. 5x2 + 3y2 = 15
15. 3x2 + 2y2 − 12y+ 6 = 0
16. x2 + y2 − 4x− 4y+ 4 = 0

In Exercises 17–20, find the equation of the hyperbola shown
in the graph.

17.
−1 1 2−2

−2

2

x

y

18.
−5 5

−5

5

x

y

19.

5

2

4

6

x

y

20.

5

2

4

6

x

y

In Exercises 21–22, sketch the hyperbola defined by the given
equation. Label the center.

21. (x− 1)2

16
− (y+ 2)2

9
= 1

22. (y− 4)2 − (x+ 1)2

25
= 1

In Exercises 23–26, write the equation of the hyperbola in stan‐
dard form.

23. 3x2 − 4y2 = 12

24. 3x2 − y2 + 2y = 10

25. x2 − 10y2 + 40y = 30

26. (4y− x)(4y+ x) = 4
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10: CURVES IN THE PLANE

We have explored functions of the form y = f(x) closely throughout this text.
We have explored their limits, their derivatives and their antiderivatives; we
have learned to identify key features of their graphs, such as relative maxima
andminima, inflection points and asymptotes; we have found equations of their
tangent lines, the areas between portions of their graphs and the x‐axis, and the
volumes of solids generated by revolving portions of their graphs about a hori‐
zontal or vertical axis.

Despite all this, the graphs created by functions of the form y = f(x) are
limited. Since each x‐value can correspond to only 1 y‐value, common shapes
like circles cannot be fully described by a function in this form. Fittingly, the
“vertical line test” excludes vertical lines from being functions of x, even though
these lines are important in mathematics.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
still workwithin the framework of functions, as an inputwill still only correspond
to one output. However, our new techniques of drawing curves will render the
vertical line test pointless, and allow us to create important — and beautiful —
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, continuing to find equations of tangent lines and the areas of enclosed
regions.

One aspect that we’ll be interested in is “how long is this curve?” Before
we explore that idea for these new ways to draw curves, we’ll start by exploring
how long a curve is when we’ve gotten it from a regular y = f(x) function.

10.1 Arc Length and Surface Area

In previous sections we have used integration to answer the following questions:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

Notes:
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Chapter 10 Curves in the Plane

In this section, we address a related question: Given a curve, what is its
length? This is often referred to as arc length.

π
4

π
2

3π
4

π

1

x

y

(a)

π
4

π
2

3π
4

π

1√
2

1

x

y

(b)

Figure 10.1.1: Graphing y = sin x on
[0, π] and approximating the curve with
line segments.

Consider the graph of y = sin x on [0, π] given in Figure 10.1.1 (a). How long
is this curve? That is, if we were to use a piece of string to exactly match the
shape of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight‐line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

In Figure 10.1.1 (b), the curve y = sin x has been approximated with 4 line
segments (the interval [0, π] has been divided into 4 equal length subintervals).
It is clear that these four line segments approximate y = sin x very well on the
first and last subinterval, though not so well in the middle. Regardless, the sum
of the lengths of the line segments is 3.79, so we approximate the arc length of
y = sin x on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x0 < x1 < . . . < xn−1 < xn = b be a partition
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval
[xi−1, xi].

Figure 10.1.2 zooms in on the ith subinterval where y = f(x) is approximat‐
ed by a straight line segment. The dashed lines show that we can view this
line segment as the hypotenuse of a right triangle whose sides have length∆xi
and ∆yi. Using the Pythagorean Theorem, the length of this line segment is√
(∆xi)2 + (∆yi)2. Summing over all subintervals gives an arc length approxi‐

mation

∆yi

∆xi

xi−1 xi

yi−1

yi

x

y

Figure 10.1.2: Zooming in on the ith
subinterval [xi−1, xi] of a partition of
[a, b].

L ≈
n∑

i=1

√
(∆xi)2 + (∆yi)2.

As it is written, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.

In the above expression factor out a∆x2i term:

n∑
i=1

√
(∆xi)2 + (∆yi)2 =

n∑
i=1

√
(∆xi)2

(
1+

(∆yi)2

(∆xi)2

)
.

Now pull the (∆xi)2 term out of the square root:

L ≈
n∑

i=1

√
1+

(∆yi)2

(∆xi)2
∆xi.

Notes:
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10.1 Arc Length and Surface Area

This is nearly a Riemann Sum. Consider the (∆yi)2/(∆xi)2 term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run”
of f on the i th subinterval. The Mean Value Theorem of Differentiation (Theo‐
rem 3.2.1) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi.
Thus we can rewrite our above expression as:

L ≈
n∑

i=1

√
1+ [f ′(ci)]2 ∆xi.

This is a Riemann Sum. As long as f ′ is continuous on [a, b], we can invoke The‐
orem 5.3.2 and conclude

L =
∫ b

a

√
1+ [f ′(x)]2 dx.

Key Idea 10.1.1 Arc Length
Let f be differentiable on an open interval containing [a, b], where f ′ is
also continuous on [a, b]. Then the arc length of f from x = a to x = b is

L =
∫ b

a

√
1+ [f ′(x)]2 dx.

Watch the video:
Arc Length at
https://youtu.be/PwmCZAWeRNE

As the integrand contains a square root, it is often difficult to use the formula
in Key Idea 10.1.1 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximating definite
integrals. The following examples will demonstrate this.

Example 10.1.1 Finding arc length
Find the arc length of f(x) = x3/2 from x = 0 to x = 4.

2 4

2

4

6

8

x

y

Figure 10.1.3: A graph of f(x) = x3/2

from Example 10.1.1.

SOLUTION A graph of f is given in Figure 10.1.3. We begin by finding

Notes:
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f ′(x) = 3
2x

1/2. Using the formula, we find the arc length L as

L =
∫ 4

0

√
1+

(
3
2
x1/2

)2

dx

=

∫ 4

0

√
1+

9
4
x dx

=

∫ 4

0

(
1+

9
4
x
)1/2

dx

=
2
3
· 4
9

(
1+

9
4
x
)3/2 ∣∣∣4

0

=
8
27

(
103/2 − 1

)
units.

Example 10.1.2 Finding arc length
Find the arc length of f(x) =

1
8
x2 − ln x from x = 1 to x = 2.

SOLUTION A graph of f is given in Figure 10.1.4; the portion of the curve
measured in this problem is in bold.

1 2 3

0.5

1

x

y

Figure 10.1.4: A graph of f(x) = 1
8 x

2 −
ln x from Example 10.1.2.

This function was chosen specifically be‐
cause the resulting integral canbe evaluated exactly. Webegin byfinding f ′(x) =
x/4− 1/x. The arc length is

L =
∫ 2

1

√
1+

(
x
4
− 1

x

)2

dx

=

∫ 2

1

√
1+

x2

16
− 1

2
+

1
x2

dx

=

∫ 2

1

√
x2

16
+

1
2
+

1
x2

dx

=

∫ 2

1

√(
x
4
+

1
x

)2

dx

=

∫ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣
2

1

=
3
8
+ ln 2 units.
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10.1 Arc Length and Surface Area

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.

Example 10.1.3 Approximating arc length numerically
Find the length of the sine curve from x = 0 to x = π.

SOLUTION This is somewhat of amathematical curiosity; Example 5.4.3
showed that the area under one “hump” of the sine curve is 2 square units; now
we are measuring its arc length.

x
√
1+ cos2 x

0
√
2

π/4
√

3/2
π/2 1
3π/4

√
3/2

π
√
2

Figure 10.1.5: A table of values of
y =

√
1+ cos2 x to evaluate a defi‐

nite integral in Example 10.1.3.

The setup is straightforward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

0

√
1+ cos2 x dx.

This integral cannot be evaluated in terms of elementary functions so we will
approximate it with Simpson’s Method with n = 4. Figure 10.1.5 gives the inte‐
grand evaluated at 5 evenly spaced points in [0, π]. Simpson’s Rule then states
that∫ π

0

√
1+ cos2 x dx ≈ π − 0

4 · 3

(√
2+ 4

√
3/2+ 2(1) + 4

√
3/2+

√
2
)

≈ 3.82918.

Using a computer with n = 100 the approximation is L ≈ 3.8202; our approxi‐
mation with n = 4 is quite good. Our approximation of 3.79 from the beginning
of this section isn’t as close.

Surface Area of Solids of Revolution

(a)

(b)

Figure 10.1.6: Establishing the formula
for surface area.

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

We begin as we have in the previous sections: we partition the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+1]. On each subinterval,
we can approximate the curve y = f(x)with a straight line that connects f(xi) and
f(xi+1) as shown in Figure 10.1.6(a). Revolving this line segment about the x‐axis
creates part of a cone (called a frustum of a cone) as shown in Figure 10.1.6(b).
The surface area of a frustum of a cone is

A = 2πravgL,

Notes:
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Chapter 10 Curves in the Plane

where ravg is the average of R1 and R2. The length is given by L; we use the
material just covered by arc length to state that

L ≈
√

1+ [f ′(ci)]2∆xi
for some ci in the i th subinterval. The radii are just the function evaluated at the
endpoints of the interval: f(xi−1) and f(xi). Thus the surface area of this sample
frustum of the cone is approximately

2π
f(xi−1) + f(xi)

2
√

1+ [f ′(ci)]2∆xi.

Since f is a continuous function, the IntermediateValue Theoremstates there

is some di in [xi−1, xi] such that f(di) =
f(xi−1) + f(xi)

2
; we can use this to rewrite

the above equation as

2πf(di)
√

1+ [f ′(ci)]2∆xi.

Summing over all the subintervals we get the total surface area to be approxi‐
mately

Surface Area ≈
n∑

i=1
2πf(di)

√
1+ [f ′(ci)]2∆xi,

which is almost a Riemann Sum (wewould need di = ci to remove the “almost”).
Taking the limit as the subinterval lengths go to zero gives us the exact surface
area, given in the upcoming Key Idea.

If instead we revolve y = f(x) about the y‐axis, the radii of the resulting
frustum are xi−1 and xi; their average value is simply themidpoint of the interval.
In the limit, this midpoint is just x. This gives the second part of Key Idea 10.1.2.

Key Idea 10.1.2 Surface Area of a Solid of Revolution
Let f be differentiable on an open interval containing [a, b] where f ′ is
also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x‐axis is

Surface Area = 2π
∫ b

a
f(x)
√

1+ [f ′(x)]2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y‐axis, where a, b ≥ 0, is

Surface Area = 2π
∫ b

a
x
√

1+ [f ′(x)]2 dx.

Notes:
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10.1 Arc Length and Surface Area

Example 10.1.4 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving y = sin x on [0, π] around
the x‐axis, as shown in Figure 10.1.7.

SOLUTION The setup turns out to be easier than the resulting integral.
Using Key Idea 10.1.2, we have the surface area SA is:

Figure 10.1.7: Revolving y = sin x on
[0, π] about the x‐axis.

SA = 2π
∫ π

0
sin x

√
1+ cos2 x dx

= −2π
∫ −1

1

√
1+ u2 du substitute u = cos x

= 2π
∫ π/4

−π/4
sec3 θ dθ substitute u = tan θ

= π (sec θ tan θ + ln |sec θ + tan θ|)|π/4−π/4 by Example 8.2.6

= π
(√

2+ ln
(√

2+ 1
)
−
(
−
√
2+ ln

(√
2− 1

)))
= π

(
2
√
2+ ln

(√
2+ 1√
2− 1

))
= 2π

(√
2+ ln

(√
2+ 1

))
units2 rationalize the denominator.

It is interesting to see that the surface area of a solid, whose shape is defined
by a trigonometric function, involves both a square root and a natural logarithm.

(a)

(b)

Figure 10.1.8: The solids used in Exam‐
ple 10.1.5.

Example 10.1.5 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving the curve y = x2 on [0, 1]
about:

1. the x‐axis 2. the y‐axis.

SOLUTION

1. The solid formed by revolving y = x2 around the x‐axis is graphed in Fig‐
ure 10.1.8(a). Like the integral in Example 10.1.4, this integral is easier to
setup than to actually integrate. While it is possible to use a trigonometric
substitution to evaluate this integral, it is significantly more difficult than

Notes:
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a solution employing the hyperbolic sine:

SA = 2π
∫ 1

0
x2
√

1+ (2x)2 dx.

=
π

32

(
2(8x3 + x)

√
1+ 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18

√
5− sinh−1 2

)
units2.

2. Since we are revolving around the y‐axis, the “radius” of the solid is not
f(x) but rather x. Thus the integral to compute the surface area is:

SA = 2π
∫ 1

0
x
√

1+ (2x)2 dx

=
π

4

∫ 5

1

√
u du substitute u = 1+ 4x2

=
π

4
2
3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
units2.

The solid formed by revolving y = x2 about the y‐axis is graphed in Fig‐
ure 10.1.8 (b).

Our final example is a famous mathematical “paradox.”

Figure 10.1.9: A graph of Gabriel’s Horn.

Example 10.1.6 The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = 1/x about the x‐axis on [1,∞).
Find the volume and surface area of this solid. (This shape, as graphed in Fig‐
ure 10.1.9, is known as “Gabriel’s Horn” since it looks like a very long horn that
only a supernatural person, such as an angel, could play.)

SOLUTION To compute the volume it is natural to use the Disk Method.

Notes:
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We have:

V = π

∫ ∞

1

1
x2

dx

= lim
b→∞

π

∫ b

1

1
x2

dx

= lim
b→∞

π

(
−1
x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straightforward to setup:

SA = 2π
∫ ∞

1

1
x
√

1+ 1/x4 dx.

Integrating this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 <

√
1+ 1/x4 on [1,∞), we can state that

2π
∫ ∞

1

1
x
dx < 2π

∫ ∞

1

1
x
√

1+ 1/x4 dx.

By Key Idea 8.6.1, the improper integral on the left diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of volume
and area. However, we have seen a similar paradox before, as referenced above.
We know that the area under the curve y = 1/x2 on [1,∞) is finite, yet the
shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

Notes:
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Exercises 10.1
Terms and Concepts
1. T/F: The integral formula for computing Arc Length was

found by first approximating arc length with straight line
segments.

2. T/F: The integral formula for computingArc Length includes
a square‐root, meaning the integration is probably easy.

Problems
In Exercises 3–12, find the arc length of the function on the
given interval.

3. f(x) = x on [0, 1].
4. f(x) =

√
8x on [−1, 1].

5. f(x) = 1
3
x3/2 − x1/2 on [0, 1].

6. f(x) = 1
12

x3 + 1
x
on [1, 4].

7. f(x) = 2x3/2 − 1
6
√
x on [0, 9].

8. f(x) = cosh x on [− ln 2, ln 2].

9. f(x) = 1
2
(
ex + e−x) on [0, ln 5].

10. f(x) = 1
12

x5 + 1
5x3

on [.1, 1].

11. f(x) = ln
(
sin x

)
on [π/6, π/2].

12. f(x) = ln
(
cos x

)
on [0, π/4].

In Exercises 13–20, set up the integral to compute the arc
length of the function on the given interval. Do not evaluate
the integral.

13. f(x) = x2 on [0, 1].
14. f(x) = x10 on [0, 1].
15. f(x) =

√
x on [0, 1].

16. f(x) = ln x on [1, e].

17. f(x) =
√
1− x2 on [−1, 1]. (Note: this describes the top

half of a circle with radius 1.)

18. f(x) =
√

1− x2/9 on [−3, 3]. (Note: this describes the
top half of an ellipse with a major axis of length 6 and a
minor axis of length 2.)

19. f(x) = 1
x
on [1, 2].

20. f(x) = sec x on [−π/4, π/4].

In Exercises 21–28, use Simpson’s Rule, with n = 4, to approxi‐
mate the arc length of the function on the given interval. Note:
these are the same problems as in Exercises 13–20.

21. f(x) = x2 on [0, 1].

22. f(x) = x10 on [0, 1].

23. f(x) =
√
x on [0, 1]. (Note: f ′(x) is not defined at x = 0.)

24. f(x) = ln x on [1, e].

25. f(x) =
√
1− x2 on [−1, 1]. (Note: f ′(x) is not defined at

the endpoints.)

26. f(x) =
√

1− x2/9 on [−3, 3]. (Note: f ′(x) is not defined
at the endpoints.)

27. f(x) = 1
x
on [1, 2].

28. f(x) = sec x on [−π/4, π/4].

In Exercises 29–32, find the surface area of the described solid
of revolution.

29. The solid formed by revolving y = 2x on [0, 1] about the
x‐axis.

30. The solid formed by revolving y = x3 on [0, 1] about the
x‐axis.

31. The solid formed by revolving y =
√
x on [0, 1] about the

x‐axis.
32. The sphere formed by revolving y =

√
1− x2 on [−1, 1]

about the x‐axis.
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10.2 Parametric Equations

10.2 Parametric Equations
We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Choose
x

−→
Use a function

f to find y(
y = f(x)

) −→
Plot point
(x, y)

In the rectangular coordinate system, the rectangular equation y = f(x)
works well for some shapes like a parabola with a vertical axis of symmetry, but
in Precalculus and the review of conic sections in Section 10.0, we encountered
several shapes that could not be sketched in thismanner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bottom” separately.)

In this section we introduce a new sketching procedure:

Choose
t

Use a function
f to find x(
x = f(t)

)
Use a function
g to find y(
y = g(t)

)
Plot point
(x, y)

Here, x and y are found separately but then plotted together. This leads us
to a definition.

Definition 10.2.1 Parametric Equations and Curves
Let f and g be continuous functions on an interval I. The graph of the
parametric equations x = f(t) and y = g(t) is the set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as the parameter t varies

over I. A curve is a graph along with the parametric equations that de‐
fine it.

Watch the video:
Parametric Equations — Some basic questions at
https://youtu.be/9kKZHQtYP7g

Notes:
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Chapter 10 Curves in the Plane

This is a formal definition of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is often referred to as a plane curve. Examples
will help us understand the concepts introduced in the definition.

t x y

−2 4 −1
−1 1 0
0 0 1
1 1 2
2 4 3

(a)

2 4

−2

2

4

t = −2

t = −1

t = 0

t = 1

t = 2

x

y

(b)

Figure 10.2.1: A table of values of the
parametric equations in Example 10.2.1
along with a sketch of their graph.

Example 10.2.1 Plotting parametric functions
Plot the graph of the parametric equations x = t2, y = t+ 1 for t in [−2, 2].

SOLUTION We plot the graphs of parametric equations in much the
samemanner as we plotted graphs of functions like y = f(x): wemake a table of
values, plot points, then connect these points with a “reasonable” looking curve.
Figure 10.2.1(a) shows such a table of values; note how we have 3 columns.

The points (x, y) from the table are plotted in Figure 10.2.1(b). The points
have been connected with a smooth curve. Each point has been labeled with its
corresponding t‐value. These values, along with the two arrows along the curve,
are used to indicate the orientation of the graph. This information describes the
path of a particle traveling along the curve.

We often use the letter t as the parameter as we often regard t as represent‐
ing time. Certainly there are many contexts in which the parameter is not time,
but it can be helpful to think in terms of time as one makes sense of parametric
plots and their orientation (for instance, “At time t = 0 the position is (1, 2) and
at time t = 3 the position is (5, 1).”).

Example 10.2.2 Plotting parametric functions
t x y
0 1 2

π/4 1/2 1+
√
2/2

π/2 0 1
3π/4 1/2 1−

√
2/2

π 1 0
(a)

0.5 1 1.5

0.5

1

1.5

2 t = 0

t = π/4

t = π/2

t = 3π/4

t = π
x

y

(b)

Figure 10.2.2: A table of values of the
parametric equations in Example 10.2.2
along with a sketch of their graph.

Sketch the graph of the parametric equations x = cos2 t, y = cos t + 1 for t in
[0, π].

SOLUTION Weagain start bymaking a table of values in Figure 10.2.2(a),
then plot the points (x, y) on the Cartesian plane in Figure 10.2.2(b).

The curves in Examples 10.2.1 and 10.2.2 are portions of the same parabola
(y − 1)2 + x = 1. While the parabola is the same, the curves are different.
In Example 10.2.1, if we let t vary over all real numbers, we’d obtain the entire
parabola. In this example, letting t vary over all real numbers would still produce
the same graph; this portion of the parabola would be traced, and re‐traced,
infinitely often. The orientation shown in Figure 10.2.2 shows the orientation
on [0, π], but this orientation is reversed on [π, 2π].

Notes:
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10.2 Parametric Equations

Converting between rectangular and parametric equations
It is sometimes useful to transform rectangular form equations (i.e., y = f(x))
into parametric form equations, and vice‐versa. Converting from rectangular to
parametric can be very simple: given y = f(x), the parametric equations x = t,
y = f(t) produce the same graph. As an example, given y = x2 − x − 6, the
parametric equations x = t, y = t2−t−6 produce the same parabola. However,
other parameterizations can be used. The following example demonstrates one
possible alternative.

−2 2 4

−5

5

t = −1

t = 1

t = 3

t = 4
x

y

(a)

−2 2 4

−5

5

t = 5

t = 3

t = 1

t = 0
x

y

(b)

−2 2 4

−5

5

t = −5

t = −1

t = 3

t = 5
x

y

(c)

Figure 10.2.3: The equation f(x) = x2 −
x− 6 with different parameterizations.

Example 10.2.3 Converting from rectangular to parametric
Find parametric equations for f(x) = x2 − x− 6.

SOLUTION Solution 1: For any choice for xwe can determine the corre‐
sponding y by substitution. If we choose x = t−1 then y = (t−1)2−(t−1)−6 =
t2 − 3t− 4. Thus f(x) can be represented by the parametric equations

x = t− 1 y = t2 − 3t− 4.

On the graph of this parameterization (Figure 10.2.3(a)) the points have been la‐
beled with the corresponding t‐values and arrows indicate the path of a particle
traveling on this curve. The particle would move from the upper left, down to
the vertex at (.5,−6.25) and then up to the right.

Solution 2: If we choose x = 3− t then y = (3− t)2 − (3− t)− 6 = t2 − 5t.
Thus f(x) can also be represented by the parametric equations

x = 3− t y = t2 − 5t.

On the graph of this parameterization (Figure 10.2.3(b)) the points have been
labeled with the corresponding t−values and arrows indicate the path of a par‐
ticle traveling on this curve. The particle wouldmove down from the upper right,
to the vertex at (.5,−6.25) and then up to the left.

Solution 3: We can also parameterize any y = f(x) by setting t = dy
dx . That is,

t = a corresponds to the point on the graph whose tangent line has a slope a.
Computing dy

dx , f
′(x) = 2x−1we set t = 2x−1. Solving for xwefind x = t+1

2 and
by substitution y = 1

4 t
2 − 25

4 . Thus f(x) can be represented by the parametric
equations

x =
t+ 1
2

y =
1
4
t2 − 25

4
.

The graph of this parameterization is shown in Figure 10.2.3(c). To find the
point where the tangent line has a slope of 0, we set t = 0. This gives us the
point (.5,−6.25) which is the vertex of f(x).

Notes:
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Example 10.2.4 Converting from rectangular to parametric
Find parametric equations for the circle x2 + y2 = 4.

SOLUTION We will present three different approaches:

Solution 1: Consider the equivalent equation
(
x
2

)2

+

(
y
2

)2

= 1 and the

Pythagorean Identity, sin2 t + cos2 t = 1. We set cos t = x
2 and sin t = y

2 ,
which gives x = 2 cos t and y = 2 sin t. To trace the circle once, we must have
0 ≤ t ≤ 2π. Note that when t = 0 a particle tracing the curve would be at the
point (2, 0) and would move in a counterclockwise direction.

Solution 2: Another parameterization of the same circle would be x = 2 sin t
and y = 2 cos t for 0 ≤ t ≤ 2π. When t = 0 a particle would be at the point
(0, 2) and would move in a clockwise direction.

Solution 3: We could let x = −2 sin t and y = 2 cos t for 0 ≤ t ≤ 2π. Also
note that we could use x = 2 cos 2t and y = 2 sin 2t for 0 ≤ t ≤ π.

As we have shown in the previous examples, there are many different ways
to parameterize any given curve. We sometimes choose the parameter to accu‐
rately model physical behavior.

Example 10.2.5 Converting from rectangular to parametric

Find a parameterization that traces the ellipse
(x− 2)2

9
+

(y+ 3)2

4
= 1 starting

at the point (−1,−3) in a clockwise direction.

SOLUTION Applying the Pythagorean Identity, cos2 t + sin2 t = 1, we

set cos2 t =
(x− 2)2

9
and sin2 t =

(y+ 3)2

4
. Solving these equations for x and

y we set x = −3 cos t+ 2 and y = 2 sin t− 3 for 0 ≤ t ≤ 2π.

Example 10.2.6 Converting from rectangular to parametric

Find a parameterization for the hyperbola
(x− 2)2

9
− (y− 3)2

4
= 1.

SOLUTION Weuse the formof the Pythagorean Identity sec2 t−tan2 t =

1. We let sec2 t =
(x− 2)2

9
and tan2 t =

(y− 3)2

4
. Solving these equations for

x and ywe have x = 3 sec t+2 and y = 2 tan t+3 for 0 ≤ t ≤ 2π and t ̸= π
2 ,

3π
2 .

Notes:
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Example 10.2.7 Converting from rectangular to parametric
An object is fired from a height of 0ft and lands 6 seconds later, 192ft away. As‐
suming ideal projectilemotion, the height, in feet, of the object can be described
by h(x) = −x2/64+ 3x, where x is the distance in feet from the initial location.
(Thus h(0) = h(192) = 0ft.) Find parametric equations x = f(t), y = g(t)
for the path of the projectile where x is the horizontal distance the object has
traveled at time t (in seconds) and y is the height at time t.

SOLUTION Physics tells us that the horizontal motion of the projectile
is linear; that is, the horizontal speed of the projectile is constant. Since the
object travels 192ft in 6s, we deduce that the object is moving horizontally at
a rate of 32ft/s, giving the equation x = 32t. As y = −x2/64 + 3x, we find
y = −16t2 + 96t. We can quickly verify that y ′′ = −32ft/s2, the acceleration
due to gravity, and that the projectile reaches its maximum at t = 3, halfway
along its path.

50 100 150 200

50

100

150
t = 2

x = 32t

y = −16t2 + 96t

x

y

Figure 10.2.4: Graphing projectile mo‐
tion in Example 10.2.7.

These parametric equationsmake certain determinations about the object’s
location easy: 2 seconds into the flight the object is at the point

(
x(2), y(2)

)
=(

64, 128
)
. That is, it has traveled horizontally 64ft and is at a height of 128ft, as

shown in Figure 10.2.4.

It is sometimes necessary to convert given parametric equations into rec‐
tangular form. This can be decidedly more difficult, as some “simple” looking
parametric equations can have very “complicated” rectangular equations. This
conversion is often referred to as “eliminating the parameter,” as we are looking
for a relationship between x and y that does not involve the parameter t.

Example 10.2.8 Eliminating the parameter
Find a rectangular equation for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

SOLUTION There is not a setway to eliminate a parameter. Onemethod
is to solve for t in one equation and then substitute that value in the second. We
use that technique here, then show a second, simpler method.

Starting with x = 1/(t2 + 1), solve for t: t = ±
√

1/x− 1. Substitute this
value for t in the equation for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1+ 1

Notes:
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=
1/x− 1
1/x

=

(
1
x
− 1
)
· x

= 1− x.

−2 −1 1 2

−1

1

2

x =
1

t2 + 1

y =
t2

t2 + 1

y = 1 − x

x

y

Figure 10.2.5: Graphing parametric and
rectangular equations for a graph in Ex‐
ample 10.2.8.

Thus y = 1 − x. One may have recognized this earlier by manipulating the
equation for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

This is a shortcut that is very specific to this problem; sometimes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the function y = 1 − x. The
parametric equations limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1− x to the same.

The graphs of these functions are given in Figure 10.2.5. The portion of the
graph defined by the parametric equations is given in a thick line; the graph
defined by y = 1− x with unrestricted domain is given in a thin line.

Example 10.2.9 Eliminating the parameter
Eliminate the parameter in x = 4 cos t+ 3, y = 2 sin t+ 1

SOLUTION We should not try to solve for t in this situation as the re‐
sulting algebra/trig would be messy. Rather, we solve for cos t and sin t in each
equation, respectively. This gives

cos t =
x− 3
4

and sin t =
y− 1
2

.

The Pythagorean Theorem gives cos2 t+ sin2 t = 1, so:

2 4 6 8

−2

2

4

x

y

Figure 10.2.6: Graphing the parametric
equations x = 4 cos t+ 3, y = 2 sin t+ 1
in Example 10.2.9.

cos2 t+ sin2 t = 1(
x− 3
4

)2

+

(
y− 1
2

)2

= 1

(x− 3)2

16
+

(y− 1)2

4
= 1

This final equation should look familiar — it is the equation of an ellipse. Fig‐
ure 10.2.6 plots the parametric equations, demonstrating that the graph is in‐
deed of an ellipse with a horizontal major axis and center at (3, 1).

Notes:
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10.2 Parametric Equations

Graphs of Parametric Equations
These examples begin to illustrate the powerful nature of parametric equations.
Their graphs are far more diverse than the graphs of functions produced by “y =
f(x)” functions.

One nice feature of parametric equations is that their graphs are easy to shift.
While this is not too difficult in the “y = f(x)” context, the resulting function can
look rather messy. (Plus, to shift to the right by two, we replace x with x − 2,
which is counterintuitive.) The following example demonstrates this.

Example 10.2.10 Shifting the graph of parametric functions
Sketch the graph of the parametric equations x = t2 + t, y = t2 − t. Find new
parametric equations that shift this graph to the right 3 units and down 2.

2 4 6 8 10

−2

2

4

6
x = t2 + t

y = t2 − t

x

y

(a)

2 4 6 8 10

−2

2

4

6
x = t2 + t + 3

y = t2 − t − 2

x

y

(b)

Figure 10.2.7: Illustrating how to shift
graphs in Example 10.2.10.

SOLUTION We see the graph in Figure 10.2.7(a). It is a parabola with
an axis of symmetry along the line y = x; the vertex is at (0, 0). It should be
noted that finding the vertex is not a trivial matter and not something you will
be asked to do in this text.

In order to shift the graph to the right 3 units, we need to increase the x‐
value by 3 for every point. The straightforward way to accomplish this is simply
to add 3 to the function defining x: x = t2 + t+ 3. To shift the graph down by 2
units, we wish to decrease each y‐value by 2, so we subtract 2 from the function
defining y: y = t2 − t− 2. Thus our parametric equations for the shifted graph
are x = t2 + t + 3, y = t2 − t − 2. This is graphed in Figure 10.2.7 (b). Notice
how the vertex is now at (3,−2).

Because the x‐ and y‐values of a graph are determined independently, the
graphs of parametric functions often possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 10.2.11 Graphs that cross themselves
Plot the parametric functions x = t3 − 5t2 + 3t + 11 and y = t2 − 2t + 3 and
determine the t‐values where the graph crosses itself.

SOLUTION Using the methods developed in this section, we again plot
points and graph the parametric equations as shown in Figure 10.2.8. It appears
that the graph crosses itself at the point (2, 6), but we’ll need to analytically
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x‐values are the same precisely when the y‐values are

Notes:
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the same. This gives us a system of 2 equations with 2 unknowns:

−5 5 10 15

5

10

15 x = t3 − 5t2 + 3t + 11

y = t2 − 2t + 3

x

y

Figure 10.2.8: A graph of the parametric
equations from Example 10.2.11.

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11
s2 − 2s+ 3 = t2 − 2t+ 3

Solving this system is not trivial but involves only algebra. Using the qua‐
dratic formula, one can solve for t in the second equation and find that t =

1±
√

s2 − 2s+ 1. This can be substituted into the first equation, revealing that
the graph crosses itself at t = −1 and t = 3. We confirm our result by comput‐
ing x(−1) = x(3) = 2 and y(−1) = y(3) = 6.

We now present a small gallery of “interesting” and “famous” curves along
with parametric equations that produce them.

−1 1

−1

1

x

y

π 2π

1

2

3

4

x

y

−2 2

1

2

3

4

x

y

Astroid
x = cos3 t
y = sin3 t

Cycloid
x = r(t− sin t)
y = r(1− cos t)

Witch of Agnesi
x = 2at

y = 2a/(1+ t2)

−5 5

−5

5

x

y

−5 5

−5

5

x

y

−2 2

−2

−1

1

2

x

y

Hypotrochoid
x = 2 cos(t) + 5 cos(2t/3)
y = 2 sin(t)− 5 sin(2t/3)

Epicycloid
x = 4 cos(t)− cos(4t)
y = 4 sin(t)− sin(4t)

Folium of Descartes
x = 3at/(1+ t3)
y = 3at2/(1+ t3)

Notes:
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10.2 Parametric Equations

One might note a feature shared by three of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
functions are not differentiable at these points. This leads us to a definition.

Definition 10.2.2 Smooth
A curve C defined by x = f(t), y = g(t) is smooth on an interval I if f ′ and
g ′ are continuous on I and not simultaneously 0 (except possibly at the
endpoints of I). A curve is piecewise smooth on I if I can be partitioned
into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cos3 t, y = sin3 t. Taking derivatives, we
have:

x ′ = −3 cos2 t sin t and y ′ = 3 sin2 t cos t.
It is clear that each is 0 when t = 0, π/2, π, . . . . Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure. However, by re‐
stricting the domain of the astroid to all reals except t = kπ

2 for k ∈ Z we have
a piecewise smooth curve.

We demonstrate this once more.
Example 10.2.12 Determine where a curve is not smooth
Let a curve C be defined by the parametric equations x = t3 − 12t + 17 and
y = t2 − 4t+ 8. Determine the points, if any, where it is not smooth.

SOLUTION We begin by taking derivatives.

5 10

2

4

6

8

x

y

Figure 10.2.9: Graphing the curve in Ex‐
ample 10.2.12; note it is not smooth at
(1, 4).

x ′ = 3t2 − 12, y ′ = 2t− 4.

We set each equal to 0:

x ′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2
y ′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We consider only the value of t = 2 since both x′ and y′ must be 0. Thus C is
not smooth at t = 2, corresponding to the point (1, 4). The curve is graphed in
Figure 10.2.9, illustrating the cusp at (1, 4).

If a curve is not smooth at t = t0, it means that x ′(t0) = y ′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equations describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direction, whereas moving objects tend to change
direction in a “smooth” fashion.

Notes:
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Chapter 10 Curves in the Plane

Example 10.2.13 The Cycloid
A well‐known parametric curve is the cycloid. Fix r, and let x = r(t − sin t),
y = r(1 − cos t). This represents the path traced out by a point on a wheel of
radius r as it starts rolling to the right. We can think of t as the angle through
which the point has rotated.

t = 0 t = 2π t = 4πt = 2π
3 t = 4π

3 t = 8π
3 t = 10π

3

Figure 10.2.10: A cycloid traced through two revolutions.
Figure 10.2.10 shows a cycloid sketched out with thewheel shown at various

places. The dot on the rim is the point on the wheel that we’re using to trace
out the curve.

From this sketch we can see that one arch of the cycloid is traced out in the
range 0 ≤ t ≤ 2π. This makes sense when you consider that the point will be
back on the ground after it has rotated through an angle of 2π.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6
produce the familiar y = x2 parabola. However, in this parameterization, the
curve is not smooth. A particle traveling along the parabola according to the
given parametric equations comes to rest at t = 0, though no sharp point is
created.

Our previous experience with cusps taught us that a function was not differ‐
entiable at a cusp. This can lead us to wonder about derivatives in the context
of parametric equations and the application of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec‐
tion.

Notes:
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Exercises 10.2
Terms and Concepts
1. T/F: When sketching the graph of parametric equations,

the x and y values are found separately, then plotted to‐
gether.

2. The direction inwhich a graph is “moving” is called the
of the graph.

3. An equation written as y = f(x) is written in form.
4. Create parametric equations x = f(t), y = g(t) and sketch

their graph. Explain any interesting features of your graph
based on the functions f and g.

Problems
In Exercises 5–8, sketch the graph of the given parametric equa‐
tions by hand, making a table of points to plot. Be sure to indi‐
cate the orientation of the graph.

5. x = t2 + t, y = 1− t2, −3 ≤ t ≤ 3
6. x = 1, y = 5 sin t, −π/2 ≤ t ≤ π/2
7. x = t2, y = 2, −2 ≤ t ≤ 2
8. x = t3 − t+ 3, y = t2 + 1, −2 ≤ t ≤ 2

In Exercises 9–18, sketch the graph of the given parametric
equations; using a graphing utility is advisable. Be sure to indi‐
cate the orientation of the graph.

9. x = t3 − 2t2, y = t2, −2 ≤ t ≤ 3
10. x = 1/t, y = sin t, 0 < t ≤ 10
11. x = 3 cos t, y = 5 sin t, 0 ≤ t ≤ 2π
12. x = 3 cos t+ 2, y = 5 sin t+ 3, 0 ≤ t ≤ 2π
13. x = cos t, y = cos(2t), 0 ≤ t ≤ π

14. x = cos t, y = sin(2t), 0 ≤ t ≤ 2π
15. x = 2 sec t, y = 3 tan t, −π/2 < t < π/2
16. x = cosh t, y = sinh t, −2 ≤ t ≤ 2
17. x = cos t+ 1

4 cos(8t), y = sin t+ 1
4 sin(8t), 0 ≤ t ≤ 2π

18. x = cos t+ 1
4 sin(8t), y = sin t+ 1

4 cos(8t), 0 ≤ t ≤ 2π

In Exercises 19–20, four sets of parametric equations are given.
Describe how their graphs are similar and different. Be sure to
discuss orientation and ranges.

19. (a) x = t y = t2, −∞ < t < ∞
(b) x = sin t y = sin2 t, −∞ < t < ∞
(c) x = et y = e2t, −∞ < t < ∞
(d) x = −t y = t2, −∞ < t < ∞

20. (a) x = cos t y = sin t, 0 ≤ t ≤ 2π
(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π
(c) x = cos(1/t) y = sin(1/t), 0 < t < 1
(d) x = cos(cos t) y = sin(cos t), 0 ≤ t ≤ 2π

In Exercises 21–24, find a parameterization for the curve.

21. y = 9− 4x
22. 4x− y2 = 5
23. (x+ 9)2 + (y− 4)2 = 49
24. (x− 2)2 − (y+ 3)2 = 25

In Exercises 25–28, find parametric equations and a parameter
interval.

25. The line segment with endpoints (−1,−3) and (4, 1)
26. The line segment with endpoints (−1, 3) and (3,−2)
27. The left half of the parabola y = x2 + 2x
28. The lower half of the parabola x = 1− y2

In Exercises 29–32, find parametric equations for the given rec‐
tangular equation using the parameter t = dy

dx
. Verify that at

t = 1, the point on the graph has a tangent line with slope of
1.

29. y = 3x2 − 11x+ 2
30. y = ex

31. y = sin x on [0, π]
32. y =

√
x on [0,∞)

33. Find parametric equations and a parameter interval for the
motion of a particle that starts at (1, 0) and traces the cir‐
cle x2 + y2 = 1

(a) once clockwise
(b) once

counter‐clockwise

(a) twice clockwise
(b) twice

counter‐clockwise
34. Find parametric equations and a parameter interval for the

motion of a particle that starts at (a, 0) and traces the el‐
lipse x2

a2 + y2
b2 = 1

(a) once clockwise
(b) once

counter‐clockwise

(a) twice clockwise
(b) twice

counter‐clockwise
In Exercises 35–44, find parametric equations that describe the
given situation.

35. A projectile is fired from a height of 0 ft, landing 16 ft away
in 4 s.

36. A projectile is fired from a height of 0 ft, landing 200 ft away
in 4 s.

37. A projectile is fired from a height of 0 ft, landing 200 ft away
in 20 s.

38. A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 2π].

39. A circle of radius 3, centered at (1, 1), that is traced once
counter‐clockwise on [0, 1].

40. An ellipse centered at (1, 3) with vertical major axis of
length 6 and minor axis of length 2.

41. An ellipse with foci at (±1, 0) and vertices at (±5, 0).
42. A hyperbola with foci at (5,−3) and (−1,−3), and with

vertices at (1,−3) and (3,−3).
43. A hyperbola with vertices at (0,±6) and asymptotes y =

±3x.
44. A lug nut that is 2” from the center of a car tire. The tire is

18” in diameter and rolling at a speed of 10”/sec.
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In Exercises 45–54, eliminate the parameter in the given para‐
metric equations.

45. x = 2t+ 5, y = −3t+ 1
46. x = sec t, y = tan t
47. x = 4 sin t+ 1, y = 3 cos t− 2
48. x = t2, y = t3

49. x = 1
t+ 1

, y = 3t+ 5
t+ 1

50. x = et, y = e3t − 3
51. x = ln t, y = t2 − 1
52. x = cot t, y = csc t
53. x = cosh t, y = sinh t
54. x = cos(2t), y = sin t

In Exercises 55–58, eliminate the parameter in the given para‐
metric equations. Describe the curve defined by the paramet‐
ric equations based on its rectangular form.

55. x = at+ x0, y = bt+ y0

56. x = r cos t, y = r sin t

57. x = a cos t+ h, y = b sin t+ k

58. x = a sec t+ h, y = b tan t+ k

In Exercises 59–62, find the values of t where the graph of the
parametric equations crosses itself.

59. x = t3 − t+ 3, y = t2 − 3

60. x = t3 − 4t2 + t+ 7, y = t2 − t

61. x = cos t, y = sin(2t) on [0, 2π]

62. x = cos t cos(3t), y = sin t cos(3t) on [0, π]

In Exercises 63–66, find the value(s) of t where the curve de‐
fined by the parametric equations is not smooth.

63. x = t3 + t2 − t, y = t2 + 2t+ 3

64. x = t2 − 4t, y = t3 − 2t2 − 4t

65. x = cos t, y = 2 cos t

66. x = 2 cos t− cos(2t), y = 2 sin t− sin(2t)
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10.3 Calculus and Parametric Equations

10.3 Calculus and Parametric Equations
The previous section defined curves based on parametric equations. In this sec‐
tion we’ll employ the techniques of calculus to study these curves.

We are still interested in lines tangent to points on a curve. They describe
how the y‐values are changing with respect to the x‐values, they are useful in
making approximations, and they indicate instantaneous direction of travel.

The slope of the tangent line is still dy
dx , and the Chain Rule allows us to cal‐

culate this in the context of parametric equations. If x = f(t) and y = g(t), the
Chain Rule states that

dy
dt

=
dy
dx

· dx
dt

.

Solving for dy
dx , we get

dy
dx

=
dy/ dt
dx/ dt

=
g ′(t)
f ′(t)

,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

Key Idea 10.3.1 Finding dy
dx with Parametric Equations.

Let x = f(t) and y = g(t), where f and g are differentiable on some open
interval I and f ′(t) ̸= 0 on I. Then

dy
dx

=
dy/ dt
dx/ dt

=
g ′(t)
f ′(t)

.

We use this to define the tangent line.

Definition 10.3.1 Tangent Lines
Let a curve C be parameterized by x = f(t) and y = g(t), where f and
g are differentiable functions on some interval I containing t = t0. The
tangent line to C at t = t0 is the line

f ′(t0)(y− g(t0)) = g′(t0)(x− f(t0)).

Notice that the tangent line goes through the point (f(t0), g(t0)). It is possi‐
ble for parametric curves to have horizontal and vertical tangents. As expected
a horizontal tangent occurs whenever dy

dx = 0 or when dy
dt = 0 (provided dx

dt ̸= 0).

Notes:
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Chapter 10 Curves in the Plane

Similarly, a vertical tangent occurs whenever dy
dx is undefined or when dx

dt = 0
(provided dy

dt ̸= 0). When dy
dx is defined, however, the tangent line has slope

g′(t0)
f ′(t0) .

Definition 10.3.2 Normal Lines
The normal line to a curve C at a point P is the line through P and per‐
pendicular to the tangent line at P. This has equation

g′(t0)(y− g(t0)) = −f ′(t0)(x− f(t0)).

As with the tangent line we note that it is possible for a normal line to be
vertical or horizontal. A horizontal normal line occurs whenever dy

dx is undefined
or when dx

dt = 0 (provided dy
dt ̸= 0). Similarly, a vertical normal line occurs

whenever dy
dx = 0 or when dy

dt = 0 (provided dx
dt ̸= 0). In other words, if the

curve C has a vertical tangent at (f(t0), g(t0)) the normal line will be horizontal
and if the tangent is horizontal the normal line will be a vertical line.

Watch the video:
Derivatives of Parametric Functions at
https://youtu.be/k5QnaGVk1JI

Example 10.3.1 Tangent and Normal Lines to Curves
Let x = 5t2−6t+4 and y = t2+6t−1, and let C be the curve defined by these
equations.

1. Find the equations of the tangent and normal lines to C at t = 3.

2. Find where C has vertical and horizontal tangent lines.

SOLUTION

1. We start by computing f ′(t) = 10t− 6 and g ′(t) = 2t+ 6. Thus

dy
dx

=
2t+ 6
10t− 6

.

Notes:
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10.3 Calculus and Parametric Equations

Make note of something that might seem unusual: dy
dx is a function of t,

not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.
The point on C at t = 3 is (31, 26). The slope of the tangent line ism = 1/2
and the slope of the normal line ism = −2. Thus,

• the equation of the tangent line is y =
1
2
(x− 31) + 26, and

• the equation of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 10.3.1.

20 40 60 80

−20

20

40

x

y

Figure 10.3.1: Graphing tangent and
normal lines in Example 10.3.1.

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and solve for

t. In this case, this amounts to setting g ′(t) = 0 and solving for t (and
making sure that f ′(t) ̸= 0).

g ′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point on C corresponding to t = −3 is (67,−10); the tangent line at
that point is horizontal (hence with equation y = −10).
To findwhereChas a vertical tangent line, wefindwhere it has a horizontal
normal line, and set − f ′(t)

g′(t) = 0. This amounts to setting f ′(t) = 0 and
solving for t (and making sure that g ′(t) ̸= 0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tangent line at
that point is x = 2.2.
The points where the tangent lines are vertical and horizontal are indicat‐
ed on the graph in Figure 10.3.1.

Example 10.3.2 Tangent and Normal Lines to a Circle

1. Find where the unit circle, defined by x = cos t and y = sin t on [0, 2π],
has vertical and horizontal tangent lines.

2. Find the equation of the normal line at t = t0.

SOLUTION

Notes:
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1. We compute the derivative following Key Idea 10.3.1:

dy
dx

=
g ′(t)
f ′(t)

= −cos t
sin t

.

The derivative is 0 when cos t = 0; that is, when t = π/2, 3π/2. These
are the points (0, 1) and (0,−1) on the circle.
The normal line is horizontal (and hence, the tangent line is vertical) when
sin t = 0; that is, when t = 0, π, 2π, corresponding to the points (−1, 0)
and (0, 1) on the circle. These results should make intuitive sense.

2. The slope of the normal line at t = t0 ism =
sin t0
cos t0

= tan t0. This normal

line goes through the point (cos t0, sin t0), giving the line

−1 1

−1

1

x

y

Figure 10.3.2: Illustrating how a circle’s
normal lines pass through its center.

y =
sin t0
cos t0

(x− cos t0) + sin t0

= (tan t0)x,

as long as cos t0 ̸= 0. It is an important fact to recognize that the nor‐
mal lines to a circle pass through its center, as illustrated in Figure 10.3.2.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles.

Example 10.3.3 Tangent lines when dy
dx is not defined

Find the equation of the tangent line to the astroid x = cos3 t, y = sin3 t at t = 0,
shown in Figure 10.3.3.

SOLUTION We start by finding x ′(t) and y ′(t):

−1 1

−1

1

x

y

Figure 10.3.3: A graph of an astroid.

x ′(t) = −3 sin t cos2 t, y ′(t) = 3 cos t sin2 t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. Evaluating dy

dx at this point returns the indeterminate form
of “0/0”.

We can, however, examine the slopes of tangent lines near t = 0, and take
the limit as t → 0.

lim
t→0

y ′(t)
x ′(t)

= lim
t→0

3 cos t sin2 t
−3 sin t cos2 t

(We can reduce as t ̸= 0.)

= lim
t→0

(
− sin t
cos t

)
= 0.
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10.3 Calculus and Parametric Equations

We have accomplished something significant. When the derivative dy
dx returns an

indeterminate form at t = t0, we can define its value by setting it to be lim
t→t0

dy
dx

,
if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0 to be 0; therefore the tangent
line is y = 0, the x‐axis.

Concavity
We continue to analyze curves in the plane by considering their concavity; that
is, we are interested in d2y

dx2 , “the second derivative of ywith respect to x.” To find
this, we need to find the derivative of dy

dx with respect to x; that is,

d2y
dx2

=
d
dx

[
dy
dx

]
,

but recall that dy
dx is a function of t, not x, making this computation not straight‐

forward.
To make the upcoming notation a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh
dt

=
dh
dx

· dx
dt

⇒ dh
dx

=
dh/ dt
dx/ dt

.

In words, to find
d2y
dx2

, we first take the derivative of
dy
dx

with respect to t, then
divide by x ′(t). We restate this as a Key Idea.

Key Idea 10.3.2 Finding d2y
dx2 with Parametric Equations

Let x = f(t) and y = g(t) be twice differentiable functions on an open
interval I, where f ′(t) ̸= 0 on I. Then

d2y
dx2

=

d
dt

[
dy
dx

]
dx
dt

=

d
dt

[
dy
dx

]
f ′(t)

.

Examples will help us understand this Key Idea.

Notes:
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Chapter 10 Curves in the Plane

Example 10.3.4 Concavity of Plane Curves
Let x = 5t2 − 6t + 4 and y = t2 + 6t − 1 as in Example 10.3.1. Determine the
t‐intervals on which the graph is concave up/down.

SOLUTION Concavity is determined by the second derivative of y with
respect to x, d2y

dx2 , so we compute that here following Key Idea 10.3.2.

In Example 10.3.1, we found
dy
dx

=
2t+ 6
10t− 6

and f ′(t) = 10t− 6. So:

d2y
dx2

=

d
dt

[
2t+6
10t−6

]
10t− 6

=
− 72

(10t−6)2

10t− 6

= − 72
(10t− 6)3

= − 9
(5t− 3)3

20 40 60 80

−20

20

40

t >
3/5

; con
cave

dow
n

t < 3/5; concave up

x

y

Figure 10.3.4: Graphing the parametric
equations in Example 10.3.4 to demon‐
strate concavity.

The graph of the parametric functions is concave up when d2y
dx2 > 0 and con‐

cave down when d2y
dx2 < 0. We determine the intervals when the second deriva‐

tive is greater/less than 0 by first finding when it is 0 or undefined.
As the numerator of − 9

(5t− 3)3
is never 0, d2y

dx2 ̸= 0 for all t. It is undefined

when 5t − 3 = 0; that is, when t = 3/5. Following the work established in
Section 3.4, we look at values of t greater or less than 3/5 on a number line:

3
5

x
f ′′ + −

f CU CD

Reviewing Example 10.3.1, we see that when t = 3/5 = 0.6, the graph of
the parametric equations has a vertical tangent line. This point is also a point of
inflection for the graph, illustrated in Figure 10.3.4.

Notes:
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10.3 Calculus and Parametric Equations

Example 10.3.5 Concavity of Plane Curves
Find the points of inflection of the graph of the parametric equations x =

√
t,

y = sin t, for 0 ≤ t ≤ 16.

SOLUTION We need to compute dy
dx and

d2y
dx2 .

dy
dx

=
y ′(t)
x ′(t)

=
cos t

1/(2
√
t)

= 2
√
t cos t.

d2y
dx2

=
d
dt
[ dy
dx
]

x ′(t)
=

cos t/
√
t− 2

√
t sin t

1/(2
√
t)

= 2 cos t− 4t sin t.

The possible points of inflection are found by setting d2y
dx2 = 0. This is not trivial,

as equations that mix polynomials and trigonometric functions generally do not
have “nice” solutions.

5 10 15

−50

50

y = 2 cos t − 4t sin t

t

y

(a)

31 2 4

−1

−0.5

0.5

1

x

y

(b)

Figure 10.3.5: In (a), a graph of d2y
dx2 ,

showing where it is approximately 0.
In (b), graph of the parametric equations
in Example 10.3.5 along with the points
of inflection.

In Figure 10.3.5(a) we see a plot of the second derivative. It shows that it has
zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These approxima‐
tions are not very good, made only by looking at the graph. Newton’s Method
provides more accurate approximations. Accurate to 2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plotted on the graph of the parametric
equations in Figure 10.3.5(b). Note how most occur near the x‐axis, but not
exactly on the axis.

Area with Parametric Equations

We will now find a formula for determining the area under a parametric curve
given by the parametric equations

x = f(t) y = g(t).

We will also need to further add in the assumption that the curve is traced out
exactly once as t increases from α to β. First, recall how to find the area under
y = F(x) on a ≤ x ≤ b:

A =

∫ b

a
F(x) dx.

Now think of the parametric equation x = f(t) as a substitution in the integral,
assuming that a = f(α) and b = f(β) for the purposes of this formula. (There is
actually no reason to assume that this will always be the case and so we’ll give
a corresponding formula later if it’s the opposite case (b = f(α) and a = f(β)).)

Notes:
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Chapter 10 Curves in the Plane

In order to substitute, we’ll need dx = f ′(t) dt. Plugging this into the area
formula above and making sure to change the limits to their corresponding t
values gives us

A =

∫ β

α

F(f(t))f ′(t) dt.

Since we don’t know what F(x) is, we’ll use the fact that

y = F(x) = F(f(t)) = g(t)

and arrive at the formula that we want.

Key Idea 10.3.3 Area Under a Parametric Curve
The area under the parametric curve given by x = f(t), y = g(t), for
f(α) = a < x < b = f(β) is

A =

∫ β

α

g(t)f ′(t) dt.

On the other hand, if we should happen to have b = f(α) and a = f(β),
then the formula would be

A =

∫ α

β

g(t)f ′(t) dt.

Let’s work an example.

Example 10.3.6 Finding the area under a parametric curve
Determine the area under the cycloid given by the parametric equations

x = 6(θ − sin θ) y = 6(1− cos θ) 0 ≤ θ ≤ 2π.

SOLUTION First, notice that we’ve switched the parameter to θ for this
problem. This is to make sure that we don’t get too locked into always having t
as the parameter.

Now, we could graph this to verify that the curve is traced out exactly once
for the given range if we wanted to.

There really isn’t too much to this example other than plugging the paramet‐
ric equations into the formula. We’ll first need the derivative of the parametric
equation for x however.

dx
dθ

= 6(1− cos θ).

Notes:
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10.3 Calculus and Parametric Equations

The area is then

A =

∫ 2π

0
36(1− cos θ)2 dθ

= 36
∫ 2π

0
1− 2 cos θ + cos2 θ dθ

= 36
∫ 2π

0

3
2
− 2 cos θ +

1
2
cos(2θ) dθ

= 36
[
3
2
θ − 2 sin θ +

1
4
sin(2θ)

]2π
0

= 108π.

Arc Length
We continue our study of the features of the graphs of parametric equations by
computing their arc length.

Recall in Section 10.1 we found the arc length of the graph of a function,
from x = a to x = b, to be

L =
∫ b

a

√
1+

(
dy
dx

)2

dx.

We can use this equation and convert it to the parametric equation context. Let‐
ting x = f(t) and y = g(t), we know that dy

dx = g ′(t)/f ′(t). Suppose that
f ′(t) > 0, and calculate the differential of x:

dx = f ′(t) dt ⇒ dt =
1

f ′(t)
· dx.

Starting with the arc length formula above, consider:

L =
∫ b

a

√
1+

(
dy
dx

)2

dx

=

∫ b

a

√
1+

[g ′(t)]2

[f ′(t)]2
dx

=

∫ b

a

√
[f ′(t)]2 + [g ′(t)]2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

Factor out the [f ′(t)]2

=

∫ t2

t1

√
[f ′(t)]2 + [g ′(t)]2 dt.

Notes:
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Chapter 10 Curves in the Plane

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula holds even
when f ′ isn’t positive and we restate it as a theorem.

Theorem 10.3.1 Arc Length of Parametric Curves
Let x = f(t) and y = g(t) be parametric equations with f ′ and g ′ con‐
tinuous on some open interval I containing t1 and t2 on which the graph
traces itself only once. The arc length of the graph, from t = t1 to t = t2,
is

L =
∫ t2

t1

√
[f ′(t)]2 + [g ′(t)]2 dt.

As before, these integrals are often not easy to compute. We start with a
simple example, then give another where we approximate the solution.

Example 10.3.7 Arc Length of a Circle
Find the arc length of the circle parameterized by x = 3 cos t, y = 3 sin t on
[0, 3π/2].

SOLUTION By direct application of Theorem 10.3.1, we have

L =
∫ 3π/2

0

√
(−3 sin t)2 + (3 cos t)2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0
3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 6π; since we are finding the arc length of 3/4 of a circle,
the arc length is 3/4 · 6π = 9π/2.

1−1

−1

1

t

y

Figure 10.3.6: A graph of the parametric
equations in Example 10.3.8, where the
arc length of the teardrop is calculated.

Notes:
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10.3 Calculus and Parametric Equations

Example 10.3.8 Arc Length of a Parametric Curve
The graph of the parametric equations x = t(t2 − 1), y = t2 − 1 crosses itself as
shown in Figure 10.3.6, forming a “teardrop.” Find the arc length of the teardrop.

SOLUTION We can see by the parameterizations of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to t = 1.
Applying Theorem 10.3.1, we have

L =
∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an antiderivative expressible by el‐
ementary functions. We turn to numerical integration to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approximation of the actual value.

Surface Area of a Solid of Revolution
Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Key Idea 10.1.2 from Section 10.1 in a
similar way as done to produce the formula for arc length done before.

Key Idea 10.3.4 Surface Area of a Solid of Revolution
Consider the graph of the parametric equations x = f(t) and y = g(t),
where f ′ and g ′ are continuous on an open interval I containing t1 and
t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the x‐axis is (where g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
g(t)

√
[f ′(t)]2 + [g ′(t)]2 dt.

2. The surface area of the solid formed by revolving the graph about
the y‐axis is (where f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
f(t)
√

[f ′(t)]2 + [g ′(t)]2 dt.

Notes:
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Chapter 10 Curves in the Plane

Example 10.3.9 Surface Area of a Solid of Revolution

Figure 10.3.7: Rotating a teardrop shape
about the x‐axis in Example 10.3.9.

Consider the teardrop shape formed by the parametric equations x = t(t2−1),
y = t2−1 as seen in Example 10.3.8. Find the surface area if this shape is rotated
about the x‐axis, as shown in Figure 10.3.7.

SOLUTION The teardrop shape is formed between t = −1 and t = 1.
Using Key Idea 10.3.4, we see we need for g(t) ≥ 0 on [−1, 1], and this is not
the case. To fix this, we simplify replace g(t) with −g(t), which flips the whole
graph about the x‐axis (and does not change the surface area of the resulting
solid). The surface area is:

Area S = 2π
∫ 1

−1
(1− t2)

√
(3t2 − 1)2 + (2t)2 dt

= 2π
∫ 1

−1
(1− t2)

√
9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of ele‐
mentary functions. Using Simpson’s Rule with n = 20, we find the area to be
S = 9.44. Using larger values of n shows this is accurate to 2 places after the
decimal.

After defining a new way of creating curves in the plane, in this section we
have applied calculus techniques to the parametric equations defining these
curves to study their properties. In the next section, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that identifies points in the plane in a manner different than
from measuring distances from the y‐ and x‐ axes.

Notes:
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Exercises 10.3
Terms and Concepts
1. T/F: Given parametric equations x = f(t) and y = g(t),

dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

2. Given parametric equations x = f(t) and y = g(t), the
derivative dy

dx as given in Key Idea 10.3.1 is a function of
?

3. T/F: Given parametric equations x = f(t) and y = g(t), to
find d2y

dx2 , one simply computes d
dt

(
dy
dx

)
.

4. T/F: If dy
dx = 0 at t = t0, then the normal line to the curve

at t = t0 is a vertical line.

Problems
In Exercises 5–12, parametric equations for a curve are given.

(a) Find dy
dx

.

(b) Find the equations of the tangent and normal line(s) at
the point(s) given.

(c) Sketch the graph of the parametric functions along with
the found tangent and normal lines.

5. x = t, y = t2; t = 1
6. x =

√
t, y = 5t+ 2; t = 4

7. x = t2 − t, y = t2 + t; t = 1
8. x = t2 − 1, y = t3 − t; t = 0 and t = 1
9. x = sec t, y = tan t on (−π/2, π/2); t = π/4

10. x = cos t, y = sin(2t) on [0, 2π]; t = π/4
11. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]; t = 3π/4
12. x = et/10 cos t, y = et/10 sin t; t = π/2

In Exercises 13–20, find t‐values where the curve defined by
the given parametric equations has horizontal or vertical tan‐
gent lines. Note: these are the same equations as in Exercis‐
es 5–12.

13. x = t, y = t2

14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t

16. x = t2 − 1, y = t3 − t

17. x = sec t, y = tan t on (−π/2, π/2)
18. x = cos t, y = sin(2t) on [0, 2π]
19. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]
20. x = et/10 cos t, y = et/10 sin t on [−π, π]

In Exercises 21–24, find t = t0 where the graph of the given
parametric equations is not smooth, then find lim

t→t0

dy
dx

.

21. x = 1
t2 + 1

, y = t3

22. x = −t3 + 7t2 − 16t+ 13, y = t3 − 5t2 + 8t− 2

23. x = t3 − 3t2 + 3t− 1, y = t2 − 2t+ 1
24. x = cos2 t, y = 1− sin2 t

In Exercises 25–32, parametric equations for a curve are giv‐
en. Find d2y

dx2 , then determine the intervals on which the graph
of the curve is concave up/down. Note: these are the same
equations as in Exercises 5–12.

25. x = t, y = t2

26. x =
√
t, y = 5t+ 2

27. x = t2 − t, y = t2 + t
28. x = t2 − 1, y = t3 − t
29. x = sec t, y = tan t on (−π/2, π/2)
30. x = cos t, y = sin(2t) on [0, 2π]
31. x = cos t sin(2t), y = sin t sin(2t) on [−π/2, π/2]
32. x = et/10 cos t, y = et/10 sin t

In Exercises 33–40, find the arc length of the graph of the para‐
metric equations on the given interval(s).

33. x = −3 sin(2t), y = 3 cos(2t) on [0, π]
34. x = et/10 cos t, y = et/10 sin t on [0, 2π] and [2π, 4π]
35. x = 5t+ 2, y = 1− 3t on [−1, 1]
36. x = 2t3/2, y = 3t on [0, 1]
37. x = cos t, y = sin t on [0, 2π]
38. x = 1+ 3t2, y = 4+ 2t3 on [0, 1]

39. x = t
1+ t

, y = ln(1+ t) on [0, 2]

40. x = et − t, y = 4et/2 on [−8, 3]

In Exercises 41–44, numerically approximate the given arc
length.

41. Approximate the arc length of one petal of the rose curve
x = cos t cos(2t), y = sin t cos(2t) using Simpson’s Rule
and n = 4.

42. Approximate the arc length of the “bow tie curve” x =
cos t, y = sin(2t) using Simpson’s Rule and n = 6.

43. Approximate the arc length of the parabola x = t2 − t,
y = t2 + t on [−1, 1] using Simpson’s Rule and n = 4.

44. A common approximate of the circumference of an ellipse

given by x = a cos t, y = b sin t is C ≈ 2π
√

a2 + b2
2

.
Use this formula to approximate the circumference of x =
5 cos t, y = 3 sin t and compare this to the approxima‐
tion given by Simpson’s Rule and n = 6.

In Exercises 45–50, a solid of revolution is described. Find or
approximate its surface area as specified.

45. Find the surface area of the sphere formed by rotating the
circle x = 2 cos t, y = 2 sin t about:
(a) the x‐axis and
(b) the y‐axis.

46. Find the surface area of the torus (or “donut”) formed by
rotating the circle x = cos t + 2, y = sin t about the
y‐axis.
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47. Find the surface area of the solid formed by rotating the
curve x = a cos3 θ, y = a sin3 θ on [0, π/2] about the
x−axis

48. Find the surface area of the solid formed by rotating the
curve x = 3t2, y = 2t3 on [0, 5] about the y−axis

49. Approximate the surface area of the solid formed by rotat‐
ing the “upper right half” of the bow tie curve x = cos t,
y = sin(2t) on [0, π/2] about the x‐axis, using Simpson’s
Rule and n = 4.

50. Approximate the surface area of the solid formed by ro‐
tating the one petal of the rose curve x = cos t cos(2t),
y = sin t cos(2t) on [0, π/4] about the x‐axis, using Simp‐
son’s Rule and n = 4.

51. Find the area under the curve given by the parametric
equations x = cosh t, y = sinh t, for 0 ≤ t ≤ θ. Sub‐
tract this area from the area of an appropriate triangle to
verify the shaded area in the bottom graph of Figure 7.4.1.
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10.4 Introduction to Polar Coordinates

10.4 Introduction to Polar Coordinates
We are generally introduced to the idea of graphing curves by relating x‐values
to y‐values through a function f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good notion of how the curve looks. This method is useful
but has limitations, not least of which is that curves that “fail the vertical line
test” cannot be graphed without using multiple functions.

The previous two sections introduced and studied a new way of plotting
points in the x, y‐plane. Using parametric equations, x and y values are comput‐
ed independently and then plotted together. This method allows us to graph an
extraordinary range of curves. This section introduces yet another way to plot
points in the plane: using polar coordinates.

Polar Coordinates

O initial ray

r

(r, θ)

θ

Figure 10.4.1: Illustrating polar coordi‐
nates.

Start with a pointO in the plane called the pole (wewill always identify this point
with the origin). From the pole, draw a ray, called the initial ray (we will always
draw this ray horizontally, identifying it with the positive x‐axis). A point P in the
plane is determined by the distance r that P is from O, and the angle θ formed
between the initial ray and the segment OP (measured counter‐clockwise). We
record the distance and angle as an ordered pair (r, θ).

Watch the video:
Polar Coordinates — The Basics at
https://youtu.be/r0fv9V9GHdo

Practice will make this process more clear.

Example 10.4.1 Plotting Polar Coordinates
Plot the following polar coordinates:

A(1, π/4) B(1.5, π) C(2,−π/3) D(−1, π/4)

SOLUTION To aid in the drawing, a polar grid is provided

O 1 2 3

at the bottom
of this page.

O 1 2 3

A

B

C

D

Figure 10.4.2: Plotting polar points in
Example 10.4.1.

To place the point A, go out 1 unit along the initial ray (putting
you on the inner circle shown on the grid), then rotate counter‐clockwise π/4
radians (or 45◦). Alternately, one can consider the rotation first: think about the
ray from O that forms an angle of π/4 with the initial ray, then move out 1 unit
along this ray (again placing you on the inner circle of the grid).

Notes:
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Chapter 10 Curves in the Plane

To plot B, go out 1.5 units along the initial ray and rotate π radians (180◦).
To plotC, go out 2 units along the initial ray then rotate clockwiseπ/3 radians,

as the angle given is negative.
To plot D, move along the initial ray “−1” units — in other words, “back

up” 1 unit, then rotate counter‐clockwise by π/4. The results are given in Fig‐
ure 10.4.2.

Consider the following two points: A(1, π) and B(−1, 0). To locate A, go out
1 unit on the initial ray then rotate π radians; to locate B, go out−1 units on the
initial ray and don’t rotate. One should see that A and B are located at the same
point in the plane. We can also consider C(1, 3π), or D(1,−π); all four of these
points share the same location.

This ability to identify a point in the plane with multiple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beautiful functions that intersect themselves (much like we sawwith parametric
functions). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this section.

Polar to Rectangular Conversion

x

yr

θ

O

P

Figure 10.4.3: Converting between rec‐
tangular and polar coordinates.

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 10.4.3 shows a point P in
the plane with rectangular coordinates (x, y) and polar coordinates (r, θ). Using
trigonometry, we can make the identities given in the following Key Idea.

Key Idea 10.4.1 Converting Between Rectangular and Polar
Coordinates

Given the polar point P(r, θ), the rectangular coordinates are deter‐
mined by

x = r cos θ y = r sin θ.

Given the rectangular coordinates (x, y), the polar coordinates are de‐
termined by

r2 = x2 + y2 tan θ =
y
x
.

Example 10.4.2 Converting Between Polar and Rectangular Coordinates

Notes:

610
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1. Convert the polar coordinates A(2, 2π/3) and B(−1, 5π/4) to rectangular
coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar coordi‐
nates.

SOLUTION

1. (a) We start with A(2, 2π/3). Using Key Idea 10.4.1, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point B(−1, 5π/4) is converted to rectangular with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈ (0.707, 0.707).

These points are plotted in Figure 10.4.4 (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re‐
lationship between the two can be seen.

O

A(2, 2π
3 )

B(−1, 5π
4 )

(a)

(0, 0)

(1, 2)

(−1, 1)

3π
4
3π
4

−π
4

1.11

(b)

Figure 10.4.4: Plotting rectangular and
polar points in Example 10.4.2.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equations:

12 + 22 = r2 tan θ =
2
1
.

The first equation tells us that r =
√
5. Using the inverse tangent

function, we find

tan θ = 2 ⇒ θ = tan−1 2 ≈ 1.11 radians ≈ 63.43◦.

Thus polar coordinates of (1, 2) are (
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equations

(−1)2 + 12 = r2 tan θ =
1
−1

.

Thus r =
√
2. We need to be careful in computing θ: using the

inverse tangent function, we have

tan θ = −1 ⇒ θ = tan−1(−1) = −π/4.

Notes:
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Chapter 10 Curves in the Plane

This is not the angle we desire. The range of tan−1 x is (−π/2, π/2);
that is, it returns angles that lie in the 1st and 4th quadrants. To
find locations in the 2nd and 3rd quadrants, add π to the result of
tan−1 x. So π+(−π/4) puts the angle at 3π/4. Thus the polar point
is (

√
2, 3π/4).

An alternate method is to use the angle θ given by arctangent, but
change the sign of r. Thus we could also refer to (−1, 1) as
(−

√
2,−π/4).

These points are plotted in Figure 10.4.4 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used.

Polar Functions and Polar Graphs
Defining a new coordinate system allows us to create a new kind of function, a
polar function. Rectangular coordinates lent themselves well to creating func‐
tions that related x and y, such as y = x2. Polar coordinates allow us to create
functions that relate r and θ. Normally these functions look like r = f(θ), al‐
though we can create functions of the form θ = f(r). The following examples
introduce us to this concept.

Example 10.4.3 Introduction to Graphing Polar Functions
Describe the graphs of the following polar functions.

1. r = 1.5

2. θ = π/4

SOLUTION

1. The equation r = 1.5 describes all points that are 1.5 units from the pole;
as the angle is not specified, any θ is allowable. All points 1.5 units from
the pole describes a circle of radius 1.5.
We can consider the rectangular equivalent of this equation; using r2 =
x2+y2, we see that 1.52 = x2+y2, which we recognize as the equation of
a circle centered at (0, 0)with radius 1.5. This is sketched in Figure 10.4.5.

O 1 2

r = 1.5
θ = π

4

Figure 10.4.5: Plotting standard polar
plots.

2. The equation θ = π/4 describes all points such that the line through them
and the polemake an angle of π/4with the initial ray. As the radius r is not
specified, it can be any value (even negative). Thus θ = π/4 describes the
line through the pole that makes an angle of π/4 = 45◦ with the initial
ray.

Notes:
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10.4 Introduction to Polar Coordinates

We can again consider the rectangular equivalent of this equation. Com‐
bine tan θ = y/x and θ = π/4:

tan(π/4) = y/x ⇒ x tan(π/4) = y ⇒ y = x.

This graph is also plotted in Figure 10.4.5.

The basic rectangular equations of the form x = h and y = k create vertical
and horizontal lines, respectively; the basic polar equations r = h and θ = α
create circles and lines through the pole, respectively. With this as a foundation,
we can create more complicated polar functions of the form r = f(θ). The input
is an angle; the output is a length, how far in the direction of the angle to go out.

We sketch these functions much like we sketch rectangular and parametric
functions: we plot lots of points and “connect the dots” with curves. We demon‐
strate this in the following example.

Example 10.4.4 Sketching Polar Functions
Sketch

θ r = 1+ cos θ

0 2
π/6 1+

√
3/2

π/4 1+ 1/
√
2

π/3 3/2
π/2 1
2π/3 1/2
3π/4 1− 1/

√
2

5π/6 1−
√
3/2

π 0
7π/6 1−

√
3/2

5π/4 1− 1/
√
2

4π/3 1/2
3π/2 1
5π/3 3/2
7π/4 1+ 1/

√
2

11π/6 1+
√
3/2

O 1 2

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

Figure 10.4.6: Graph of the polar func‐
tion in Example 10.4.4 by plotting points.

the polar function r = 1+ cos θ on [0, 2π] by plotting points.

SOLUTION A common question when sketching curves by plotting se‐
lected points is “Which points should I plot?” With rectangular equations, we
often chose “easy” values — integers, then added more if needed. When plot‐
ting polar equations, start with the “common” angles — multiples of π/6 and
π/4. Figure 10.4.6 gives a table of just a few values of θ in [0, π].

Consider the point (2, 0) determined by the first line of the table. The angle
is 0 radians—we do not rotate from the initial ray – then we go out 2 units from
the pole. When θ = π/6, r = 1 +

√
3/2; so rotate by π/6 radians and go out

1+
√
3/2 units.

Example 10.4.5 Sketching Polar Functions
Sketch the polar function r = cos(2θ) on [0, 2π] by plotting points.

SOLUTION We start by making a table of cos(2θ) evaluated at com‐
mon angles θ, as shown in Figure 10.4.7. These points are then plotted in Fig‐
ure 10.4.8. This particular graph “moves” around quite a bit and one can easily
forget which points should be connected to each other. To help us with this, we

Notes:
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Chapter 10 Curves in the Plane

numbered each point in the table and on the graph.
Pt. θ cos(2θ) Pt. θ cos(2θ)

1 0 1 10 7π/6 0.5
2 π/6 0.5 11 5π/4 0
3 π/4 0 12 4π/3 −0.5
4 π/3 −0.5 13 3π/2 −1
5 π/2 −1 14 5π/3 −0.5
6 2π/3 −0.5 15 7π/4 0
7 3π/4 0 16 11π/6 0.5
8 5π/6 0.5 17 2π 1
9 π 1

Figure 10.4.7: Tables of points for plotting a polar curve.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15 16 17

Figure 10.4.8: Polar plots from Exam‐
ple 10.4.5.

This plot is an example of a rose curve.

It is sometimes desirable to refer to a graph via a polar equation, and other
times by a rectangular equation. Therefore it is necessary to be able to convert
between polar and rectangular functions, which we practice in the following
example. We will make frequent use of the identities found in Key Idea 10.4.1.

Example 10.4.6 Converting between rectangular and polar equations.
Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

3. r =
2

sin θ − cos θ

4. r = 2 cos θ

SOLUTION

1. Replace y with r sin θ and replace x with r cos θ, giving:

y = x2

r sin θ = r2 cos2 θ
sin θ
cos2 θ

= r

We have found that r = sin θ/ cos2 θ = tan θ sec θ. The domain of this
polar function is (−π/2, π/2); plot a few points to see how the familiar
parabola is traced out by the polar equation.

Notes:
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10.4 Introduction to Polar Coordinates

2. We again replace x and y using the standard identities and work to solve
for r:

xy = 1
r cos θ · r sin θ = 1

r2 =
1

cos θ sin θ

r =
1√

cos θ sin θ

−5 5

−5

5

x

y

Figure 10.4.9: Graphing xy = 1 from
Example 10.4.6.

This function is valid only when the product of cos θ sin θ is positive. This
occurs in the first and third quadrants, meaning the domain of this polar
function is (0, π/2) ∪ (π, 3π/2).
We can rewrite the original rectangular equation xy = 1 as y = 1/x. This
is graphed in Figure 10.4.9; note how it only exists in the first and third
quadrants.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products r cos θ and r sin θ, and then replace these with x
and y, respectively. We start in this problem by multiplying both sides by
sin θ − cos θ:

r =
2

sin θ − cos θ
r(sin θ − cos θ) = 2
r sin θ − r cos θ = 2. Now replace with y and x:

y− x = 2
y = x+ 2.

The original polar equation, r = 2/(sin θ − cos θ) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equations of lines
in polar form.

4. By multiplying both sides by r, we obtain both an r2 term and an r cos θ
term, which we replace with x2 + y2 and x, respectively.

r = 2 cos θ
r2 = 2r cos θ

x2 + y2 = 2x.

Notes:
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Chapter 10 Curves in the Plane

We recognize this as a circle; by completing the square we can find its
radius and center.

x2 − 2x+ y2 = 0
(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming gallery
of polar curves gives the equations of some circles in polar form; circles
with arbitrary centers have a complicated polar equation that we do not
consider here.

Some curves have very simple polar equations but rather complicated rec‐
tangular ones. For instance, the equation r = 1 + cos θ describes a cardioid (a
shape important to the sensitivity of microphones, among other things; one is
graphed in the gallery in the Limaçon section). Its rectangular form is not nearly
as simple; it is the implicit equation x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0. The
conversion is not “hard,” but takes several steps, and is left as an exercise.

Gallery of Polar Curves
There are a number of basic and “classic” polar curves, famous for their beau‐
ty and/or applicability to the sciences. This section ends with a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to investigate with technology other types of polar func‐
tions.

Lines
Through the origin: Horizontal line: Vertical line: Not through origin:

θ = α r = a csc θ r = a sec θ r =
b

sin θ −m cos θ

α a
{ ︷︸︸ ︷a

slo
pe
=
m

}
b

Notes:

616



Circles Spiral
Centered on origin: (x− a

2 )
2 + y2 = a2

4 x2 + (y− a
2 )

2 = a2
4 Archimedean spiral

r = a r = a cos θ r = a sin θ r = θ

︷ ︸︸ ︷a ︷ ︸︸ ︷a

a



Limaçons
Symmetric about x‐axis: r = a± b cos θ; Symmetric about y‐axis: r = a± b sin θ; a, b > 0
With inner loop: Cardioid: Dimpled: Convex:
a
b
< 1

a
b
= 1 1 <

a
b
< 2

a
b
> 2

Rose Curves
Symmetric about x‐axis: r = a cos(nθ); Symmetric about y‐axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.
r = a cos(2θ) r = a sin(2θ) r = a cos(3θ) r = a sin(3θ)

Special Curves
Rose curves Lemniscate: Eight Curve:
r = a sin(θ/5) r = a sin(2θ/5) r2 = a2 cos(2θ) r2 = a2 sec4 θ cos(2θ)



Chapter 10 Curves in the Plane

Earlier we discussed how each point in the plane does not have a unique
representation in polar form. This can be a “good” thing, as it allows for the
beautiful and interesting curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter‐
sect.

Example 10.4.7 Finding points of intersection with polar curves
Determinewhere the graphs of the polar equations r = 1+3 cos θ and r = cos θ
intersect.

SOLUTION As technology is generally readily available, it is usually a
good idea to start with a graph. We have graphed the two functions in Fig‐
ure 10.4.10(a); to better discern the intersection points, part (b) of the figure
zooms in around the origin.

2 4

−2

2

0

π/2

(a)

−0.5 0.5

−0.5

0.5

0

π/2

(b)

Figure 10.4.10: Graphs to help deter‐
mine the points of intersection of the
polar functions given in Example 10.4.7.

We start by setting the two functions equal to each
other and solving for θ:

1+ 3 cos θ = cos θ
2 cos θ = −1

cos θ = −1
2

θ =
2π
3
,
4π
3
.

(There are, of course, infinite solutions to the equation cos θ = −1/2; as the
limaçon is traced out once on [0, 2π], we restrict our solutions to this interval.)

We need to analyze this solution. When θ = 2π/3 we obtain the point of
intersection that lies in the 4th quadrant. When θ = 4π/3, we get the point of
intersection that lies in the 1st quadrant. There is more to say about this second
intersection point, however. The circle defined by r = cos θ is traced out once on
[0, π], meaning that this point of intersection occurs while tracing out the circle
a second time. It seems strange to pass by the point once and then recognize
it as a point of intersection only when arriving there a “second time.” The first
time the circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos π/3, π/3) and (cos 4π/3, 4π/3).

To summarize what we have done so far, we have found two points of in‐
tersection: when θ = 2π/3 and when θ = 4π/3. When referencing the circle
r = cos θ, the latter point is better referenced as when θ = π/3.

There is yet another point of intersection: the pole (or, the origin). We did
not recognize this intersection point using our work above as each graph arrives
at the pole at a different θ value.

A graph intersects the pole when r = 0. Considering the circle r = cos θ, r =
0 when θ = π/2 (and odd multiples thereof, as the circle is repeatedly traced).

Notes:
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10.4 Introduction to Polar Coordinates

The limaçon intersects the pole when 1+ 3 cos θ = 0; this occurs when cos θ =
−1/3, or for θ = cos−1(−1/3). This is a nonstandard angle, approximately
θ = 1.9106 radians ≈ 109.47◦. The limaçon intersects the pole twice in [0, 2π];
the other angle at which the limaçon is at the pole is the reflection of the first
angle across the x‐axis. That is, θ = 4.3726 ≈ 250.53◦.

If all one is concernedwith is the (x, y) coordinates at which the graphs inter‐
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3
can give us the needed rectangular coordinates. However, in the next section
we apply calculus concepts to polar functions. When computing the area of a
region bounded by polar curves, understanding the nuances of the points of
intersection becomes important.

Notes:
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Exercises 10.4
Terms and Concepts
1. In your own words, describe how to plot the polar point

P(r, θ).
2. T/F: When plotting a point with polar coordinate P(r, θ), r

must be positive.
3. T/F: Every point in the Cartesian plane can be represented

by a polar coordinate.
4. T/F: Every point in the Cartesian plane can be represented

uniquely by a polar coordinate.

Problems
5. Plot the points with the given polar coordinates.

(a) A(2, 0)
(b) B(1, π)

(a) C(−2, π/2)
(b) D(1, π/4)

6. Plot the points with the given polar coordinates.

(a) A(2, 3π)
(b) B(1,−π)

(a) C(1, 2)
(b) D(1/2, 5π/6)

7. For each of the given points give two sets of polar coordi‐
nates that identify it, where 0 ≤ θ ≤ 2π.

O 1 2 3

A

B

C

D

8. For each of the given points give two sets of polar coordi‐
nates that identify it, where−π ≤ θ ≤ π.

O 1 2 3

A

B

C

D

9. Convert the polar coordinates A and B to rectangular, and
the rectangular coordinates C and D to polar.

(a) A(2, π/4)
(b) B(2,−π/4)

(a) C(2,−1)
(b) D(−2, 1)

10. Convert the polar coordinates A and B to rectangular, and
the rectangular coordinates C and D to polar.

(a) A(3, π)
(b) B(1, 2π/3)

(a) C(0, 4)
(b) D(1,−

√
3)

In Exercises 11–32, graph the polar function on the given inter‐
val.

11. r = 2, 0 ≤ θ ≤ π/2

12. θ = π/6, −1 ≤ r ≤ 2
13. r = 1− cos θ, [0, 2π]
14. r = 2+ sin θ, [0, 2π]
15. r = 2− sin θ, [0, 2π]
16. r = 1− 2 sin θ, [0, 2π]
17. r = 1+ 2 sin θ, [0, 2π]
18. r = cos(2θ), [0, 2π]
19. r = sin(3θ), [0, π]
20. r = cos(θ/3), [0, 3π]
21. r = cos(2θ/3), [0, 6π]
22. r = θ/2, [0, 4π]
23. r = 3 sin(θ), [0, π]
24. r = −4 sin(θ), [0, π]
25. r = −2 cos(θ), [0, π]

26. r = 3
2
cos(θ), [0, π]

27. r = cos θ sin θ, [0, 2π]
28. r = θ2 − (π/2)2, [−π, π]

29. r = 3
5 sin θ − cos θ

, [0, 2π]

30. r = −2
3 cos θ − 2 sin θ

, [0, 2π]

31. r = 3 sec θ, (−π/2, π/2)
32. r = 3 csc θ, (0, π)

In Exercises 33–44, convert the polar equation to a rectangular
equation.

33. r = 2 cos θ
34. r = −4 sin θ
35. r = 3 sin θ

36. r = −3
2
cos θ

37. r = cos θ + sin θ

38. r = 7
5 sin θ − 2 cos θ

39. r = 3
cos θ

40. r = 4
sin θ

41. r = tan θ
42. r = cot θ
43. r = 2
44. θ =

π

6
In Exercises 45–52, convert the rectangular equation to a polar
equation.

45. y = x
46. y = 4x+ 7
47. x = 5
48. y = 5
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49. x = y2

50. x2y = 1
51. x2 + y2 = 7
52. (x+ 1)2 + y2 = 1

In Exercises 53–60, find the points of intersection of the polar
graphs.

53. r = sin(2θ) and r = cos θ on [0, π]
54. r = cos(2θ) and r = cos θ on [0, π]
55. r = 2 cos θ and r = 2 sin θ on [0, π]
56. r = sin θ and r =

√
3+ 3 sin θ on [0, 2π]

57. r = sin(3θ) and r = cos(3θ) on [0, π]

58. r = 3 cos θ and r = 1+ cos θ on [−π, π]

59. r = 1 and r = 2 sin(2θ) on [0, 2π]

60. r = 1− cos θ and r = 1+ sin θ on [0, 2π]

61. Pick a integer value for n, where n ̸= 2, 3, and use technolo‐
gy to plot r = sin

(m
n
θ
)
for three different integer values

of m. Sketch these and determine a minimal interval on
which the entire graph is shown.

62. Create your own polar function, r = f(θ) and sketch it. De‐
scribe why the graph looks as it does.
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Chapter 10 Curves in the Plane

10.5 Calculus and Polar Functions
The previous section defined polar coordinates, leading to polar functions. We
investigated plotting these functions and solving a fundamental question about
their graphs, namely, where do two polar graphs intersect?

We now turn our attention to answering other questions, whose solutions
require the use of calculus. A basis for much of what is done in this section is
the ability to turn a polar function r = f(θ) into a set of parametric equations.
Using the identities x = r cos θ and y = r sin θ, we can create the parametric
equations x = f(θ) cos θ, y = f(θ) sin θ and apply the concepts of Section 10.3.

Polar Functions and dy
dx

We are interested in the lines tangent to a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equations. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concerned with r ′ = f ′(θ); that describes how fast r changes with
respect to θ. Instead, we will use x = f(θ) cos θ, y = f(θ) sin θ to compute dy

dx .
Using Key Idea 10.3.1 we have

dy
dx

=
dy
dθ

/dx
dθ

.

Each of the two derivatives on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

Key Idea 10.5.1 Finding dy
dx with Polar Functions

Let r = f(θ) be a polar function. With x = f(θ) cos θ and y = f(θ) sin θ,

dy
dx

=
dy
dθ
dx
dθ

=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

Watch the video:
The Slope of Tangent Lines to Polar Curves at
https://youtu.be/QTa9OZ4iGPo

Notes:
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10.5 Calculus and Polar Functions

Example 10.5.1 Finding dy
dx with polar functions.

Consider the limaçon r = 1+ 2 sin θ on [0, 2π].

1. Find the rectangular equations of the tangent and normal lines to the
graph at θ = π/4.

2. Find where the graph has vertical and horizontal tangent lines.

SOLUTION

1. We start by computing dy
dx . With f ′(θ) = 2 cos θ, we have

dy
dx

=
2 cos θ sin θ + cos θ(1+ 2 sin θ)
2 cos2 θ − sin θ(1+ 2 sin θ)

=
cos θ(4 sin θ + 1)

2(cos2 θ − sin2 θ)− sin θ
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simplification).

In rectangular coordinates, the point on the graph at θ = π/4 is (1 +√
2/2, 1 +

√
2/2). Thus the rectangular equation of the line tangent to

the limaçon at θ = π/4 is

y = (−2
√
2− 1)

(
x− (1+

√
2/2)

)
+ 1+

√
2/2 ≈ −3.83x+ 8.24.

The limaçon and the tangent line are graphed in Figure 10.5.1.
The normal line has the opposite‐reciprocal slope as the tangent line, so
its equation is

y ≈ 1
3.83

x+ 1.26.

2. To find the horizontal lines of tangency, we find where dy
dx = 0 (when the

denominator does not equal 0); thus we find where the numerator of our
equation for dy

dx is 0.

cos θ(4 sin θ + 1) = 0 ⇒ cos θ = 0 or 4 sin θ + 1 = 0.

On [0, 2π], cos θ = 0 when θ = π/2, 3π/2.
Setting 4 sin θ + 1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦.
We want the results in [0, 2π]; we also recognize there are two solutions,
one in the 3rd quadrant and one in the 4th. Using reference angles, we
have our two solutions as θ = 3.39 and 6.03 radians. The four points
we obtained where the limaçon has a horizontal tangent line are given in
Figure 10.5.1 with black‐filled dots.

Notes:
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Chapter 10 Curves in the Plane

To find the vertical lines of tangency, we determine where dy
dx is undefined

by setting the denominator of dy
dx = 0 (when the numerator does not equal

0).

2(cos2 θ − sin2 θ)− sin θ = 0.

Convert the cos2 θ term to 1− sin2 θ:

2(1− sin2 θ − sin2 θ)− sin θ = 0
4 sin2 θ + sin θ − 2 = 0.

Recognize this as a quadratic in the variable sin θ. Using the quadratic
formula, we have

sin θ =
−1±

√
33

8
.

−2 −1 1 2

1

2

3

0

π/2

Figure 10.5.1: The limaçon in Exam‐
ple 10.5.1 with its tangent line at
θ = π/4 and points of vertical and
horizontal tangency.

We solve sin θ = −1+
√
33

8 and sin θ = −1−
√
33

8 :

sin θ =
−1+

√
33

8
sin θ =

−1−
√
33

8

θ = sin−1
(
−1+

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ ≈ 0.6349 θ ≈ −1.0030

In each of the solutions above, we only get one of the possible two so‐
lutions as sin−1 x only returns solutions in [−π/2, π/2], the 4th and 1st
quadrants. Again using reference angles, we have:

sin θ =
−1+

√
33

8
⇒ θ ≈ 0.6349, 2.5067 radians

and

sin θ =
−1−

√
33

8
⇒ θ ≈ 4.1446, 5.2802 radians.

These points are also shown in Figure 10.5.1 with white‐filled dots.

When the graph of the polar function r = f(θ) intersects the pole, it means

that f(α) = 0 for some angle α. Making this substitution in the formula for
dy
dx

Notes:
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10.5 Calculus and Polar Functions

given in Key Idea 10.5.1 we see

dy
dx

=
f ′(α) sinα+ f(α) cosα
f ′(α) cosα− f(α) sinα

=
sinα
cosα

= tanα.

This equation makes an interesting point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Exam‐
ple 10.4.3) shows us that the line through the pole with slope tanα has polar
equation θ = α. Thus when a polar graph touches the pole at θ = α, the
equation of the tangent line at the pole is θ = α.

Example 10.5.2 Finding tangent lines at the pole
Let r = 1 + 2 sin θ, a limaçon. Find the equations of the lines tangent to the
graph at the pole.

−1 −0.5 0.5 1

−0.5

0.5

1

0

π/2

Figure 10.5.2: Graphing the tangent lines
at the pole in Example 10.5.2.

SOLUTION We need to know when r = 0.

1+ 2 sin θ = 0
sin θ = −1/2

θ =
7π
6
,
11π
6

.

Thus the equations of the tangent lines, in polar coordinates, are θ = 7π/6 and
θ = 11π/6. In rectangular form, the tangent lines are y = tan(7π/6)x = x√

3
and y = tan(11π/6)x = − x√

3 . The full limaçon can be seen in Figure 10.5.1; we
zoom in on the tangent lines in Figure 10.5.2.

Area

When using rectangular coordinates, the equations x = h and y = k defined
vertical and horizontal lines, respectively, and combinations of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

Note: Recall that the area of a sector
of a circle with radius r subtended by
an angle θ is A = 1

2θr
2.

r
θ

When using polar coordinates, the equations θ = α and r = c form lines
through the origin and circles centered at the origin, respectively, and combi‐
nations of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar functions by first approximating
with sectors of circles.

Consider Figure 10.5.3 (a) where a region defined by r = f(θ) on [α, β] is
given. (Note how the “sides” of the region are the lines θ = α and θ = β,

Notes:
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Chapter 10 Curves in the Plane

whereas in rectangular coordinates the “sides” of regionswere often the vertical
lines x = a and x = b.)

Partition the interval [α, β] into n equally spaced subintervals as α = θ0 <
θ1 < . . . < θn = β. The radian length of each subinterval is ∆θ = (β − α)/n,
representing a small change in angle. The area of the region defined by the i th
subinterval [θi−1, θi] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi−1, θi]. The area of this sector is 1

2 [f(ci)]
2∆θ. This is shown

in part (b) of the figure, where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

0.5 1

0.5

1

θ = α

θ
=

β

r = f(θ)

0

π/2

(a)

0.5 1

0.5

1

θ
=

β

r = f(θ)

θ = α

0

π/2

(b)

Figure 10.5.3: Computing the area of a
polar region.

Area ≈
n∑

i=1

1
2
[f(ci)]2∆θ.

This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the
exact area of the region in the form of a definite integral.

Theorem 10.5.1 Area of a Polar Region
Let f be continuous and non‐negative on [α, β], where 0 ≤ β − α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1
2

∫ β

α

[f(θ)]2 dθ =
1
2

∫ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 10.5.3 Area of a polar region
Find the area of the circle defined by r = cos θ. (Recall this circle has radius 1/2.)

SOLUTION This is a direct application of Theorem 10.5.1. The circle is

Notes:
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10.5 Calculus and Polar Functions

traced out on [0, π], leading to the integral

Note: Example 10.5.3 requires the
use of the integral

∫
cos2 θ dθ. This

is handled well by using the half an‐
gle formula as found in the back of
this text. Due to the nature of the
area formula, integrating cos2 θ and
sin2 θ is required often. We offer
here these indefinite integrals as a
time‐saving measure.∫

cos2 θ dθ =
1
2
θ +

1
4
sin(2θ) + C∫

sin2 θ dθ =
1
2
θ − 1

4
sin(2θ) + C

Area =
1
2

∫ π

0
cos2 θ dθ

=
1
2

∫ π

0

1+ cos(2θ)
2

dθ

=
1
4
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π

0

=
π

4
.

Of course, we already knew the area of a circle with radius 1/2. We did this
example to demonstrate that the area formula is correct.

Example 10.5.4 Area of a polar region
Find the area of the cardioid r = 1+cos θ bound between θ = π/6 and θ = π/3,
as shown in Figure 10.5.4.

SOLUTION This is again a direct application of Theorem 10.5.1.

1 2

1

θ =
π/

6θ
=

π
/
3

0

π/2

Figure 10.5.4: Finding the area of the
shaded region of a cardioid in Exam‐
ple 10.5.4.

Area =
1
2

∫ π/3

π/6
(1+ cos θ)2 dθ

=
1
2

∫ π/3

π/6
(1+ 2 cos θ + cos2 θ) dθ

=
1
2

[
θ + 2 sin θ +

1
2
θ +

1
4
sin(2θ)

]π/3
π/6

=
1
8
(
π + 4

√
3− 4

)
.

Area Between Curves

Our study of area in the context of rectangular functions led naturally to finding
area bounded between curves. We consider the same in the context of polar
functions.

0.5 1

0.5

1

r2 = f2(θ)r1 = f1(θ)

θ =
α

θ
=

β

0

π/2

Figure 10.5.5: Illustrating area bound
between two polar curves.

Consider the shaded region shown in Figure 10.5.5. We can find the area of
this region by computing the area bounded by r2 = f2(θ) and subtracting the
area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1
2

∫ β

α

r 22 dθ −
1
2

∫ β

α

r 21 dθ =
1
2

∫ β

α

(
r 22 − r 21

)
dθ.

Notes:
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Chapter 10 Curves in the Plane

Key Idea 10.5.2 Area Between Polar Curves
The area A of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where 0 ≤ f1(θ) ≤ f2(θ) on [α, β], is

A =
1
2

∫ β

α

[f2(θ)]2 − [f1(θ)]2 dθ =
1
2

∫ β

α

(
r 22 − r 21

)
dθ.

1 2 3

−1

1

0

π/2

Figure 10.5.6: Finding the area between
polar curves in Example 10.5.5.

Example 10.5.5 Area between polar curves
Find the area bounded between the curves r = 1 + cos θ and r = 3 cos θ, as
shown in Figure 10.5.6.

SOLUTION We need to find the points of intersection between these
two functions. Setting them equal to each other, we find:

1+ cos θ = 3 cos θ
cos θ = 1/2

θ = ±π/3

Thus we integrate 1
2
(
(3 cos θ)2 − (1+ cos θ)2

)
on [−π/3, π/3].

Area =
1
2

∫ π/3

−π/3

(
(3 cos θ)2 − (1+ cos θ)2

)
dθ

=
1
2

∫ π/3

−π/3

(
8 cos2 θ − 2 cos θ − 1

)
dθ

=
1
2
(
2 sin(2θ)− 2 sin θ + 3θ

)∣∣∣∣∣
π/3

−π/3

= π.

Amazingly enough, the area between these curves has a “nice” value.

Example 10.5.6 Area defined by polar curves
Find the area bounded between the polar curves r = 1 and one petal of r =
2 cos(2θ) where y > 0, as shown in Figure 10.5.7(a).

SOLUTION

1 2

−1

1

0

π/2

(a)

0.5 1

0.5

1

0

π/2

(b)

Figure 10.5.7: Graphing the region
bounded by the functions in Exam‐
ple 10.5.6.

We need to find the point of intersection between the two

Notes:
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10.5 Calculus and Polar Functions

curves. Setting the two functions equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1
2

⇒ 2θ = π/3 ⇒ θ = π/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
θ = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1, θ = 0 and θ = π/6. (Note:
the dashed line lies on the line θ = π/6.) Above the dashed line the region is
bounded by r = 2 cos(2θ) and θ = π/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A1 and the area above the dashed line
A2. They are determined by the following integrals:

A1 =
1
2

∫ π/6

0
(1)2 dθ A2 =

1
2

∫ π/4

π/6

(
2 cos(2θ)

)2 dθ.
(The upper bound of the integral computing A2 is π/4 as r = 2 cos(2θ) is at the
pole when θ = π/4.)

We omit the integration details and let the reader verify that A1 = π/12 and
A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8.

Arc Length
As we have already considered the arc length of curves defined by rectangular
and parametric equations, we now consider it in the context of polar equations.
Recall that the arc length L of the graph defined by the parametric equations
x = f(t), y = g(t) on [a, b] is

L =
∫ b

a

√
[f ′(t)]2 + [g ′(t)]2 dt =

∫ b

a

√
[x ′(t)]2 + [y ′(t)]2 dt. (10.5.1)

Now consider the polar function r = f(θ). We again use the identities x =
f(θ) cos θ and y = f(θ) sin θ to create parametric equations based on the polar
function. We compute x ′(θ) and y ′(θ) as done before when computing dy

dx , then
apply Equation (10.5.1).

The expression [x ′(θ)]2 + [y ′(θ)]2 can be simplified a great deal; we leave
this as an exercise and state that

[x ′(θ)]2 + [y ′(θ)]2 = [f ′(θ)]2 + [f(θ)]2.

This leads us to the arc length formula.

Notes:
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Chapter 10 Curves in the Plane

Key Idea 10.5.3 Arc Length of Polar Curves
Let r = f(θ) be a polar function with f ′ continuous on an open interval
I containing [α, β], on which the graph traces itself only once. The arc
length L of the graph on [α, β] is

L =
∫ β

α

√
[f ′(θ)]2 + [f(θ)]2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

Example 10.5.7 Arc Length of Polar Curves
Find the arc length of the cardioid r = 1+ cos θ.

SOLUTION With r = 1 + cos θ, we have r′ = − sin θ. The cardioid is
traced out once on [0, 2π], giving us our bounds of integration. Applying Key
Idea 10.5.3 we have

L =
∫ 2π

0

√
(− sin θ)2 + (1+ cos θ)2 dθ

=

∫ 2π

0

√
sin2 θ + (1+ 2 cos θ + cos2 θ) dθ

=

∫ 2π

0

√
2+ 2 cos θ dθ

=

∫ 2π

0

√
2+ 2 cos θ

√
2− 2 cos θ√
2− 2 cos θ

dθ

=

∫ 2π

0

√
4− 4 cos2 θ√
2− 2 cos θ

dθ

= 2
∫ 2π

0

√
1− cos2 θ√
2− 2 cos θ

dθ

= 2
∫ 2π

0

|sin θ|√
2− 2 cos θ

dθ

Since the sin θ > 0 on [0, π] and sin θ < 0 on [π, 2π] we separate the integral
into two parts

2
∫ π

0

sin θ√
2− 2 cos θ

dθ − 2
∫ 2π

π

sin θ√
2− 2 cos θ

dθ

Using the symmetry of the cardioid and u‐substitution (u = 2 − 2 cos θ) we

Notes:
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10.5 Calculus and Polar Functions

simplify the integration to

L = 4
∫ π

0

sin θ√
2− 2 cos θ

dθ

= 2
∫ 4

0

1√
u
du

= 4u1/2
∣∣∣∣4
0
= 8.

Example 10.5.8 Arc length of a limaçon
Find the arc length of the limaçon r = 1+ 2 sin θ.

SOLUTION With r = 1 + 2 sin θ, we have r ′ = 2 cos θ. The limaçon
is traced out once on [0, 2π], giving us our bounds of integration. Applying Key
Idea 10.5.3, we have

L =
∫ 2π

0

√
(2 cos θ)2 + (1+ 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

−2 −1 1 2

1

2

3

0

π/2

Figure 10.5.8: The limaçon in Exam‐
ple 10.5.8 whose arc length is measured.

The final integral cannot be solved in terms of elementary functions, so we re‐
sorted to a numerical approximation. (Simpson’s Rule, with n = 4, approximates
the value with 13.0608. Using n = 22 gives the value above, which is accurate
to 4 places after the decimal.)

Surface Area

The formula for arc length leads us to a formula for surface area. The following
Key Idea is based on Key Idea 10.3.4.

Notes:
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Chapter 10 Curves in the Plane

Key Idea 10.5.4 Surface Area of a Solid of Revolution
Consider the graphof the polar equation r = f(θ), where f ′ is continuous
on an open interval containing [α, β] on which the graph does not cross
itself.

1. The surface area of the solid formed by revolving the graph about
the initial ray (θ = 0) is:

Surface Area = 2π
∫ β

α

f(θ) sin θ
√
[f ′(θ)]2 + [f(θ)]2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π
∫ β

α

f(θ) cos θ
√
[f ′(θ)]2 + [f(θ)]2 dθ.

Example 10.5.9 Surface area determined by a polar curve
Find the surface area formedby revolving one petal of the rose curve r = cos(2θ)
about its central axis (see Figure 10.5.9).

SOLUTION

−1 1

−1

1

0

π/2

(a)

(b)

Figure 10.5.9: Finding the surface area
of a rose‐curve petal that is revolved
around its central axis.

We choose, as implied by the figure, to revolve the portion
of the curve that lies on [0, π/4] about the initial ray. Using Key Idea 10.5.4 and
the fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π
∫ π/4

0
cos(2θ) sin(θ)

√(
−2 sin(2θ)

)2
+
(
cos(2θ)

)2 dθ
≈ 1.36707.

The integral is another that cannot be evaluated in terms of elementary func‐
tions. Simpson’s Rule, with n = 4, approximates the value at 1.36751.

This chapter has been about curves in the plane. While there is great math‐
ematics to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathematics in 3D —
that is, in space. The next chapter begins our exploration into space by introduc‐
ing the topic of vectors, which are incredibly useful and powerful mathematical
objects.

Notes:
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Exercises 10.5
Terms and Concepts
1. Given polar equation r = f(θ), how can one create para‐

metric equations of the same curve?
2. With rectangular coordinates, it is natural to approximate

area with ; with polar coordinates, it is natural to
approximate area with .

Problems
In Exercises 3–10, find:

(a) dy
dx

(b) the equation of the tangent and normal lines to the
curve at the indicated θ‐value.

3. r = 1; θ = π/4
4. r = cos θ; θ = π/4
5. r = 1+ sin θ; θ = π/6
6. r = 1− 3 cos θ; θ = 3π/4
7. r = θ; θ = π/2
8. r = cos(3θ); θ = π/6
9. r = sin(4θ); θ = π/3

10. r = 1
sin θ − cos θ

; θ = π

In Exercises 11–14, find the values of θ in the given interval
where the graph of the polar function has horizontal and verti‐
cal tangent lines.

11. r = 3; [0, 2π]
12. r = 2 sin θ; [0, π]
13. r = cos(2θ); [0, 2π]
14. r = 1+ cos θ; [0, 2π]

In Exercises 15–18, find the equation of the lines tangent to
the graph at the pole.

15. r = sin θ; [0, π]
16. r = cos 3θ; [0, π]
17. r = cos 2θ; [0, 2π]
18. r = sin 2θ; [0, 2π]

In Exercises 19–30, find the area of the described region.

19. Enclosed by the circle: r = 4 sin θ, π
3 ≤ θ ≤ 2π

3

20. Enclosed by the circle r = 5
21. Enclosed by one petal of r = sin(3θ)
22. Enclosed by one petal of the rose curve r = cos(n θ),

where n is a positive integer.
23. Enclosed by the cardioid r = 1− sin θ
24. Enclosed by the inner loop of the limaçon r = 1+ 2 cos θ
25. Enclosed by the outer loop of the limaçon r = 1 + 2 cos θ

(including area enclosed by the inner loop)

26. Enclosed between the inner and outer loop of the limaçon
r = 1+ 2 cos θ

27. Enclosed by r = 2 cos θ and r = 2 sin θ, as shown:

−1 1 2

−1

1

2

x

y

28. Enclosed by r = cos(3θ) and r = sin(3θ), as shown:

1

0.5

x

y

29. Enclosed by r = cos θ and r = sin(2θ), as shown:

1

1

x

y

30. Enclosed by r = cos θ and r = 1− cos θ, as shown:

−2 −1 1

−1

1

x

y

In Exercises 31–36, answer the questions involving arc length.
31. Let x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ. Show, as sug‐

gested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

32. Use the arc length formula to compute the arc length of
the circle r = 2.

33. Use the arc length formula to compute the arc length of
the circle r = 4 sin θ.

34. Use the arc length formula to compute the arc length of
r = cos θ + sin θ.

35. Approximate the arc length of one petal of the rose curve
r = sin(3θ) with Simpson’s Rule and n = 4.

36. Approximate the arc length of the cardioid r = 1 + cos θ
with Simpson’s Rule and n = 6.
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In Exercises 37–42, answer the questions involving surface
area.
37. Use Key Idea 10.5.4 to find the surface area of the sphere

formed by revolving the circle r = 2 about the initial ray.
38. Use Key Idea 10.5.4 to find the surface area of the sphere

formed by revolving the circle r = 2 cos θ about the initial
ray.

39. Find the surface area of the solid formed by revolving the
cardioid r = 1+ cos θ about the initial ray.

40. Find the surface area of the solid formed by revolving the
circle r = 2 cos θ about the line θ = π/2.

41. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, −π/4 ≤ θ ≤ π/4, about the line
θ = π/2.

42. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, 0 ≤ θ ≤ π/4, about the initial ray.
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SOLUTIONS TO SELECTED
PROBLEMS

Chapter 7

Exercises 7.1

1. F

3. The point (10, 1) lies on the graph of y = f−1(x)
(assuming f is invertible).

5.

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−8
−7
−6
−5
−4
−3
−2
−1

1
2
3
4
5
6
7
8

f(x)

x

y

7. Compose f(g(x)) and g(f(x)) to confirm that each equals
x.

9. Compose f(g(x)) and g(f(x)) to confirm that each equals
x.

11. [−4, 0] or [0, 4]

13. (−∞, 3] or [3,∞)

15. f−1(x) = 2x+ 1
x− 1

17. f−1(x) = ln(x+ 2)− 3

19. 0

21. −1/5

23. 1/
√
2

25. 7/
√
58

27. 3π/4

29. x/2

31. x/
√
x2 + 25

33.

35.

37. 2π/3
√
3

Exercises 7.2
1. The point (10, 1) lies on the graph of y = f−1(x)

(assuming f is invertible) and (f−1)′(10) = 1/5.

3.
(
f−1)′ (20) = 1

f ′(2) = 1/5

5.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

7.
(
f−1)′ (1/2) = 1

f ′(1) = −2

9. h′(t) = 2√
1−4t2

11. g′(x) = 2
1+4x2

13. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

15. h′(x) = sin−1 x+cos−1 x√
1−x2(cos−1 x)2

17. f ′(x) = − 1√
1−x2

19. (a) f(x) = x, so f ′(x) = 1
(b) f ′(x) = cos(sin−1 x) 1√

1−x2
= 1.

21. (a) f(x) =
√
1− x2, so f ′(x) = −x√

1−x2

(b) f ′(x) = cos(cos−1 x)( 1√
1−x2

) = −x√
1−x2

23. y =
√
2(x−

√
2/2) + π/4

25. −π/6

27. 1
2

(
sin−1 r

)2
+ C

29. sin−1(et/
√
10) + C

31.
√
91 ≈ 9.54 feet

Exercises 7.3
1. (−∞,∞)

3. (−∞, 0) ∪ (0,∞)

5. f ′(t) = 3t2et
3−1

7. f ′(x) = 1− x ln 5 ln x
x5x ln 5

9. f ′(x) = 1

11. h ′(r) = 3r ln 3
1+ 32r

13. 24
ln 5

15. 3x
2−1

2ln3 + C

A.3



17. 1
2 sin

2(ex) + C

19. ln 245
ln 3

− 1

21. 1
2 ln

2(x) + C
23. 1

6 ln
2 (x3)+ C

25. n = −3, 2
27. y′ = (1+ x)1/x

( 1
x(x+1) −

ln(1+x)
x2

)
Tangent line: y = (1− 2 ln 2)(x− 1) + 2

29. y′ = xx
x+1

(
ln x+ 1− 1

x+1

)
Tangent line: y = (1/4)(x− 1) + 1/2

31. y′ = x+1
x+2

( 1
x+1 −

1
x+2

)
Tangent line: y = 1/9(x− 1) + 2/3

33. y′ = xe
x−1ex(1+ x ln x)

Tangent line: y = ex− e+ 1
35. r = (ln 2)/5730; 5730 ln 10/ ln 2 ≈ 19034.65 years

Exercises 7.4
1. Because cosh x is always positive.
3. cosh t = 13/12, etc.

5. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2

−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1

7. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

9. d
dx

[sech x] = d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= − 2(ex − e−x)

(ex + e−x)(ex + e−x)

= − 2
ex + e−x ·

ex − e−x

ex + e−x

= − sech x tanh x

11.
∫

tanh x dx =
∫

sinh x
cosh x

dx

Let u = cosh x; du = (sinh x) dx

=

∫
1
u
du

= ln |u|+ C
= ln(cosh x) + C.

13. 2 cosh 2x
15. 2x sech2(x2)
17. sinh2 x+ cosh2 x
19. −2x

(x2)
√

1−x4

21. 4x√
4x4−1

23. − csc x
25. y = x
27. y = 9

25 (x+ ln 3)− 4
5

29. y = x
31. 1

2 ln(cosh(2x)) + C
33. 1

2 sinh
2 x+ C or 1/2 cosh2 x+ C

35. cosh−1(x2/2) + C = ln(x2 +
√
x4 − 4) + C

37. tan−1(ex) + C
39. 0
41. Using rule #32.: A =

∫ sinh θ
0

√
1+ y2 − y coth θ dy = θ

2 .

Exercises 7.5
1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

3. F
5. derivatives; limits
7. Answers will vary.
9. 3

11. −1
13. 5
15. a/b
17. 1/2
19. 0
21. ∞
23. 0
25. −2
27. 0
29. 0
31. ∞
33. ∞
35. 0
37. 1
39. 1
41. 1
43. 1
45. 1
47. 2
49. −∞
51. 0
53. 3√5
55. Use technology to verify sketch.
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Chapter 8

Exercises 8.1
1. T
3. sin x− x cos x+ C

5. −x2 cos x+ 2x sin x+ 2 cos x+ C

7. 1/2ex
2
+ C

9. − 1
2 xe

−2x − e−2x

4 + C

11. 1/5e2x(sin x+ 2 cos x) + C

13. 1
10e

5x(sin(5x) + cos(5x)) + C

15.
√
1− x2 + x sin−1(x) + C

17. 1
2 x

2 tan−1(x)− x
2 +

1
2 tan

−1(x) + C

19. 1
2 x

2 ln |x| − x2
4 + C

21. − x2
4 + 1

2 x
2 ln |x− 1| − x

2 −
1
2 ln |x− 1|+ C

23. 1
3 x

3 ln |x| − x3
9 + C

25. 2x+ x (ln |x+ 1|)2 + (ln |x+ 1|)2 − 2x ln |x+ 1| −
2 ln |x+ 1|+ 2+ C

27. ln |sin x| − x cot x+ C

29. 1
3 (x

2 − 2)3/2 + C

31. x sec x− ln |sec x+ tan x|+ C

33. x sinh x− cosh x+ C

35. x sinh−1 x−
√
x2 + 1+ C

37. 1/2x
(
sin(ln x)− cos(ln x)

)
+ C

39. 1
2 x ln |x| −

x
2 + C

41. 1/2x2 + C

43. π

45. 0
47. 1/2
49. 3

4e2 − 5
4e4

51. 1
5

(
eπ + e−π

)
53.
55. (a) bn = (−1)n+12/n

(b) answers will vary

Exercises 8.2
1. F
3. F
5. 1

4 sin
4 x+ C

7. 3
8 x+

1
4 sin 2x+

1
32 sin 4x+ C

9. 1
6 cos

6 x− 1
4 cos

4 x+ C

11. 1
2 cos

2 x− ln |cos x|+ C

13.
( 2
7 cos

3 x− 2
3 cos x

)√
cos x+ C

15. 1
2

( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

17. 1
2

(
sin(x) + 1

3 sin(3x)
)
+ C

19. tan x− x+ C

21. tan6(x)
6 + tan4 x

4 + C

23. sec5(x)
5 − sec3 x

3 + C

25. 1
3 tan

3 x− tan x+ x+ C

27. 1
2 (sec x tan x− ln |sec x+ tan x|) + C

29. ln |csc x− cot x|+ C

31. − 1
2 cot

2 x+ ln |csc x|+ C

33. 2
5

35. 32/315

37. 2/3

39. 16/15

41. 1

Exercises 8.3

1. backwards

3. (a) tan2 θ + 1 = sec2 θ
(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln

∣∣√x2 + 1+ x
∣∣)+ C

7. x
√

x2 + 1/4+ 1
4 ln
∣∣∣2√x2 + 1/4+ 2x

∣∣∣+ C =

1
2 x
√
4x2 + 1+ 1

4 ln
∣∣√4x2 + 1+ 2x

∣∣+ C

9. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln

∣∣∣4x+ 4
√

x2 − 1/16
∣∣∣)+ C =

1
2 x
√
16x2 − 1− 1

8 ln
∣∣4x+√

16x2 − 1
∣∣+ C

11. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

13. 2
(

x
4

√
x2 + 4+ ln

∣∣∣∣√x2+1
2 + x

2

∣∣∣∣)+ C

15. 1
2

(
9 sin−1(x/3) + x

√
9− x2

)
+ C

17.
√
7 tan−1

(
x√
7

)
+ C

19. 14 sin−1
(

x√
5

)
+ C

21. 5
4 sec

−1(|x| /4) + C

23.
tan−1

(
x−1√

7

)
√

7 + C

25. 3 sin−1 ( x−4
5

)
+ C

27.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

29. − 1√
x2+9

+ C (Trig. Subst. is not needed)

31. 1
18

x+2
x2+4x+13 +

1
54 tan

−1 ( x+2
3

)
+ C

33. 1
7

(
−
√

5−x2
x − sin−1(x/

√
5)
)
+ C

35. π/2

37. 2
√
2+ 2 ln(1+

√
2)
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39. 9 sin−1(1/3) + 2
√
2 Note: the new bounds of

integration are sin−1(−1/3) < θ < sin−1(1/3). The final
answer comes with recognizing that
sin−1(−1/3) = − sin−1(1/3) and that
cos
(
sin−1(1/3)

)
= cos

(
sin−1(−1/3)

)
= 2

√
2/3.

41. (a) π(1− π
4 )

(b) π(
√
2− ln(1+

√
2))

Exercises 8.4
1. rational
3. A

x +
B

x−3

5. A
x−

√
7 +

B
x+

√
7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

9. 1
3 (ln |x+ 2| − ln |x− 2|) + C

11. − 4
x+8 − 3 ln |x+ 8|+ C

13. − ln |2x− 3|+ 5 ln |x− 1|+ 2 ln |x+ 3|+ C

15. x+ ln |x− 1| − ln |x+ 2|+ C

17. 2x+ C

19. 1
x +

1
2 ln
∣∣∣ x−1
x+1

∣∣∣+ C

21. ln
∣∣3x2 + 5x− 1

∣∣+ 2 ln |x+ 1|+ C

23. ln |x| − 1
2 ln(x

2 + 1)− tan−1 x− 1
2(x2+1) + C

25. 1
2

(
3 ln
∣∣x2 + 2x+ 17

∣∣− 4 ln |x− 7|+ tan−1 ( x+1
4

))
+ C

27. − 1
4 ln(x

2 + 3) + 1
4 ln(x

2 + 1) + C = 1
4 ln

x2+1
x2+3 + C

29. 3
(
ln
∣∣x2 − 2x+ 11

∣∣+ ln |x− 9|
)
+3
√

2
5 tan

−1
(

x−1√
10

)
+C

31. 1
32 ln |x− 2| − 1

32 ln |x+ 2| − 1
16 tan

−1(x/2) + C

33. ln x− 1
2 ln(x

2 + 1) + 1
2

1
x2+1 + C

35. ln(2000/243) ≈ 2.108
37. −π/4+ tan−1 3− ln(11/9) ≈ 0.263
39.

Exercises 8.5
1. x sin−1 x+

√
1− x2 + C

3. 18 ln |x− 2| − 9 ln |x− 1| − 5 ln |x− 3|+ C

5. x
25

√
x2 + 25

+ C

7. 2 ln |x− 1| − ln |x| − 1
x− 1

− 1
(x− 1)2

+ C

9. 1
2
ex

2
(x2 − 1) + C

11. 1
13

e2x(2 sin 3x− 3 cos 3x) + C

13. −
√
4− x2 + C

15. 2 tan−1 √x+ C

17. 1
27

[6x sin 3x− (9x2 − 2) cos 3x] + C

19. 2
3
(1+ ex)3/2 + C

21. 1
3
tan3 x+ C

23. −1
4
(8− x3)4/3 + C

25. 1
10

(3− 2x)5/2 − 1
2
(3− 2x)3/2 + C

27. 2
5
x5/2 − 8

3
x3/2 + 6x1/2 + C

29. 11
2

ln |x+ 5| − 15
2

ln |x+ 7|+ C

31. etan x + C

33. −1
5
cot5 x+ 1

3
cot3 x− cot x− x+ C

35. 1
3
x3 − 1

4
tanh 4x+ C

37. 3 sin−1( x+ 5
6
)
+ C

39. 1
3
sec3 x− sec x+ C

41. −2 sin−1(2x
3
)
− 1

x
√
9− 4x2 + C

43. − ln x+ 4
4
√
x
+ 4 ln

∣∣1− 4√x
∣∣+ C

45. −x
2(25+ x2)

+
1
10

tan−1( x
5
)
+ C

47. 1
4
x4 − 2x2 + 4 ln |x|+ C

49. 3
64

(2x+ 3)8/3 − 9
20

(2x+ 3)5/3 + 27
16

(2x+ 3)2/3 + C

51. −1
7
cos 7x+ C

53.
55. 1

2 ln
∣∣tan θ

2

∣∣− 1
4 tan

2 θ
2 + C.

Exercises 8.6
1. The interval of integration is finite, and the integrand is

continuous on that interval.
3. converges; could also state≤ 10.
5. p > 1
7. e5/2
9. 1/3

11. 1/ ln 2
13. diverges
15. 1
17. diverges
19. diverges
21. 2

√
3

23. diverges
25. diverges
27. 1
29. 0
31. −1/4
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33. −1

35. diverges

37. diverges; Limit Comparison Test with 1/x.

39. diverges; Limit Comparison Test with 1/x.

41. converges; Direct Comparison Test with e−x.

43. converges; Direct Comparison Test with 1/(x2 − 1).

45. converges; Direct Comparison Test with 1/ex.

47. (a) e−λa

(b) 1
λ

(c) e−1

Exercises 8.7

1. F

3. They are superseded by the Trapezoidal Rule; it takes an
equal amount of work and is generally more accurate.

5. (a) 3/4
(b) 2/3
(c) 2/3

7. (a) 1
4 (1+

√
2)π ≈ 1.896

(b) 1
6 (1+ 2

√
2)π ≈ 2.005

(c) 2

9. (a) 38.5781
(b) 147/4 ≈ 36.75
(c) 147/4 ≈ 36.75

11. (a) 0
(b) 0
(c) 0

13. Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452

15. Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066

17. Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873

19. Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077

21. (a) n = 161 (using max
(
f ′′(x)

)
= 1)

(b) n = 12 (using max
(
f (4)(x)

)
= 1)

23. (a) n = 1004 (using max
(
f ′′(x)

)
= 39)

(b) n = 62 (using max
(
f (4)(x)

)
= 800)

25. (a) Area is 30.8667 cm2.
(b) Area is 308, 667 yd2.

27. Let f(x) = a(x− x1)2 + b(x− x1) + c, so that
f(x1) = c = y1, f(x1 +∆x) = a∆x2 + b∆x+ c = y2, and
f(x1 + 2∆x) = 4a∆x2 + 2b∆x+ c = y3. Therefore,
a = y1−2y2+y3

2(∆x)2 and b = 4y2−y3−3y1
2∆x , and∫ x1+2∆x

x1
a(x− x1)2 + b(x− x1) + c dx =

a(2∆x)3

3
+

b(2∆x)2

2
+ c(2∆x) =

4(y1 − 2y2 + y3)∆x
3

+ (4y2 − y3 − 3y1)∆x+ 2y1∆x =
∆x
3

(4y1 − 8y2 + 4y3 + 12y2 − 3y3 − 9y1 + 6y1) =
∆x
3

(y1 + 4y2 + y3).

Chapter 9

Exercises 9.1
1. Answers will vary.
3. Answers will vary.
5. 2, 8

3 ,
8
3 ,

32
15 ,

64
45

7. − 1
3 ,−2,− 81

5 ,−
512
3 ,− 15625

7

9. an = 3n+ 1
11. an = 10 · 2n−1

13. 1/7
15. 0
17. diverges
19. converges to 0
21. converges to 0
23. diverges
25. converges to e
27. converges to 5
29. diverges
31. converges to 0
33. converges to 0
35. converges to ln 2
37. converges to 0
39. bounded
41. bounded below
43. monotonically increasing
45. never monotonic
47. never monotonic
49. Let {an} be given such that lim

n→∞
|an| = 0. By the

definition of the limit of a sequence, given any ε > 0,
there is am such that for all n > m, | |an| − 0| < ε. Since
| |an| − 0| = |an − 0|, this directly implies that for all
n > m, |an − 0| < ε, meaning that lim

n→∞
an = 0.

51. Left to reader
53. (d) 2
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Exercises 9.2
1. Answers will vary.
3. One sequence is the sequence of terms {an}. The other is

the sequence of nth partial sums, {Sn} = {
∑n

i=1 ai}.
5. F
7. (a) −1,− 1

2 ,−
5
6 ,−

7
12 ,−

47
60

(b) Plot omitted

9. (a) −1, 0,−1, 0,−1
(b) Plot omitted

11. (a) 1, 3
2 ,

5
3 ,

41
24 ,

103
60

(b) Plot omitted

13. (a) −0.9,−0.09,−0.819,−0.1629,−0.75339
(b) Plot omitted

15. Converges because it is a geometric series with r = 1
5 .

17. Diverges by Theorem 9.2.4
19. Diverges
21. lim

n→∞
an = 1; by Theorem 9.2.4 the series diverges.

23. Diverges
25. Diverges
27. lim

n→∞
an = e; by Theorem 9.2.4 the series diverges.

29. Converges
31. Converges
33. (a) Sn = 1−(1/4)n

3/4

(b) Converges to 4/3.

35.
(a) Sn =

{
− n+1

2 n is odd
n
2 n is even

(b) Diverges

37. (a) Sn = 1−(1/e)n+1

1−1/e .

(b) Converges to 1/(1− 1/e) = e/(e− 1).

39. (a) With partial fractions, an = 1
n −

1
n+1 .

Thus Sn = 1− 1
n+1 .

(b) Converges to 1.

41. (a) Use partial fraction decomposition to recognize the
telescoping series: an = 1

2

(
1

2n−1 −
1

2n+1

)
, so that

Sn = 1
2

(
1− 1

2n+1

)
= n

2n+1 .

(b) Converges to 1/2.

43. (a) Sn = 1− 1
(n+1)2

(b) Converges to 1.

45. (a) an = 1/2n + 1/3n for n ≥ 0. Thus Sn = 1−1/22
1/2 +

1−1/3n
2/3 .

(b) Converges to 2+ 3/2 = 7/2.

47. (a) Sn = 1−(sin 1)n+1

1−sin 1

(b) Converges to 1
1−sin 1 .

49. (−3, 3)
51. (−∞,−4) ∪ (4,∞)

53. lim
n→∞

an = 3; by Theorem 9.2.4 the series diverges.

55. lim
n→∞

an = ∞; by Theorem 9.2.4 the series diverges.

57. lim
n→∞

an = 1/2; by Theorem 9.2.4 the series diverges.

59. Using partial fractions, we can show that
an = 1

4

(
1

2n−1 +
1

2n+1

)
. The series is effectively twice the

sum of the odd terms of the Harmonic Series which was
shown to diverge in Example 9.2.5. Thus this series
diverges.

61. 2
(

1+r
1−r

)

Exercises 9.3
1. continuous, positive and decreasing
3. Converges
5. Diverges
7. Converges
9. Converges

11. p > 1
13. p > 1
15.

Exercises 9.4

1.
∞∑
n=0

bn converges; we cannot conclude anything about

∞∑
n=0

cn

3. Converges; compare to
∞∑
n=1

1
n2

, as

1/(n2 + 3n− 5) ≤ 1/n2 for all n > 1.

5. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 3.

7. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

9. Converges; compare to
∞∑
n=1

1
n2

.

11. Diverges; compare to
∞∑
n=1

ln n
n

.

13. Diverges; compare to
∞∑
n=1

1
n
.
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15. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

17. Converges; compare to
∞∑
n=1

(
2
5

)n

, as

2n/(5n + 10) < 2n/5n for all n ≥ 1.

19. Converges by Comparison Test with
∑ 1

n3

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
· 1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 ln n) ≤ 1/n2 for

all n ≥ 3.
25. Converges; Integral Test

27. Diverges; the nth Term Test and Direct Comparison Test
can be used.

29. Converges; the Direct Comparison Test can be used with
sequence 1/3n.

31. Diverges; the nth Term Test can be used, along with the
Integral Test.

33. (a) Converges; use Direct Comparison Test as an
n < an.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.
(d) May converge; certainly nan > an but that does not

mean it does not converge.
(e) Does not converge, using logic from (b) and nth Term

Test.

Exercises 9.5

1. The signs of the terms do not alternate; in the given
series, some terms are negative and the others positive,
but they do not necessarily alternate.

3. Many examples exist; one common example is
an = (−1)n/n.

5. (a) converges
(b) converges (p‐Series)
(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges

9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional

11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)
(b) diverges
(c) n/a; diverges

15. (a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute

17. (a) converges
(b) diverges (p‐Series Test with p = 1/2)
(c) conditional

19. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

21. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

23. n = 5

25. Using the theorem, we find n = 499 guarantees the sum
is within 0.001 of π/4. (Convergence is actually faster, as
the sum is within ε of π/24 when n ≥ 249.)

27. Using 5 terms, the series in 23 gives π ≈ 3.142013. Using
499 terms, the series in 25 gives π ≈ 3.143597. The
series in 23 gives the better approximation, and requires
many fewer terms.

Exercises 9.6
1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The Ratio Test is inconclusive; the p‐Series Test states it
diverges.

11. Converges

13. Converges; note the summation can be rewritten as
∞∑
n=1

2nn!
3nn!

, from which the Ratio Test can be applied.

15. Diverges

17. Converges

19. Converges

21. Diverges
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23. Diverges. The Root Test is inconclusive, but the nth‐Term
Test shows divergence. (The terms of the sequence
approach e−2, not 0, as n → ∞.)

25. Converges

27. Converges

Exercises 9.7
1. Diverges

3. Diverges

5. Diverges

7. Absolutely converges

9. Conditionally converges

11. Diverges

13. Absolutely converges

15. Absolutely converges

17. Absolutely converges

19. Conditionally converges

21. Absolutely converges

23. Absolutely converges

25. Diverges

27. Diverges

29. Absolutely converges

31. Diverges

33. Absolutely converges

35. Diverges

37. Absolutely converges

Exercises 9.8
1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1
(b) (2, 4]

13. (a) R = 2
(b) (−2, 2)

15. (a) R = 1/5
(b) (4/5, 6/5)

17. (a) R = 1
(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)

21. (a) R = 1
(b) [−1, 1]

23. (a) R = 0
(b) x = 0

25. (a) R = 1
(b) [− 1

3 ,
5
3 )

27. (a) R = ∞
(b) (−∞,∞)

29.
∞∑
n=0

8nxn+1, R = 1/8

31.
∞∑
n=0

x2n+3

3n+1 , R =
√
3

33.

(a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+

∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

35.

(a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

37.

(a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

39.

(a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+

∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

41.

(a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)
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43.

(a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

45. (a)
∑∞

n=0 x
n(−1)n(1+ n); R = 1

(b)
∑∞

n=1 x
n−1(−1)n−1(1+ n)n/2

=
∑∞

n=0 x
n(−1)n(2+ n)(1+ n)/2

(c)
∑∞

n=1 x
n+1(−1)n−1(1+ n)n/2

=
∑∞

n=0 x
n+2(−1)n(2+ n)(1+ n)/2

=
∑∞

n=2 x
n(−1)nn(−1+ n)/2

47. ln 3−
∞∑
n=1

3−nxn/n, R = 3

49.
∞∑
n=0

2
2n+ 1

x2n+1, R = 1

51.
∞∑
n=0

(−1)n x6n+5

2n+ 1
; R = 1

53.
∞∑
n=0

(n+ 2)(n+ 1)
2n+4 xn+3; R = 2

Exercises 9.9
1. The Maclaurin polynomial is a special case of Taylor

polynomials. Taylor polynomials are centered at a specific
x‐value; when that x‐value is 0, it is a Maclaurin
polynomial.

3. p2(x) = 6+ 3x− 4x2.
5. p3(x) = 1− x+ 1

2 x
3 − 1

6 x
3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1
11. p4(x) = x4 − x3 + x2 − x+ 1
13. p4(x) =

1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2 −

− π
4 +x
√

2 − (− π
4 +x)2

2
√

2 +
(− π

4 +x)3

6
√

2 +

(− π
4 +x)4

24
√

2 − (− π
4 +x)5

120
√

2 − (− π
4 +x)6

720
√

2

17. p5(x) =
1
2 −

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 +

1+x
2 + 1

4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

1
4! · 0.1

4 ≈ 0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2;
p2(10) = 3.16204. The third derivative of f(x) =

√
x is

bounded on [9, 10] by 0.0015. Error is bounded by
0.0015

3! · 13 = 0.0003.

25. The nth derivative of f(x) = ex is bounded by e on [0, 1].
Thus |Rn(1)| ≤ e

(n+1)!1
(n+1). When n = 7, this is less than

0.0001.

27. The nth derivative of f(x) = cos x is bounded by 1 on
intervals containing 0 and π/3. Thus
|Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1). When n = 7, this is less

than 0.0001. Since the Maclaurin polynomial of cos x only
uses even powers, we can actually just use n = 6.

29. 1
n! x

n

31. When n even, 0; when n is odd, (−1)(n−1)/2

n! xn.

33. (−1)nxn

35. 1+ x+ 1
2
x2 + 1

6
x3 + 1

24
x4

Exercises 9.10

1. A Taylor polynomial is a polynomial, containing a finite
number of terms. A Taylor series is a series, the
summation of an infinite number of terms.

3. All derivatives of ex are ex which evaluate to 1 at x = 0.
The Taylor series starts 1+ x+ 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth derivative of 1/(1− x) is
f (n)(x) = (n)!/(1− x)n+1, which evaluates to n! at x = 0.
The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x−π/2)+ 0x2 + 1

6 (x−π/2)3 + 0x4 − 1
120 (x−π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is
odd and f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n x
n

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1,

f (n)(1) = (−1)n+1 n!
2n+1

The Taylor series starts
1
2 +

1
4 (x− 1)− 1

8 (x− 1)2 + 1
16 (x− 1)3 · · · ;

the Taylor series is 1
2
+

∞∑
n=1

(−1)n+1 (x− 1)n

2n+1 .
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13. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣∣f (n+1)(z)
∣∣∣

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ ,

where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0,
then x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x
value, letM = max{ex, 1}; f (n)(z) < M. This allows us to
state

|Rn(x)| ≤
M

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ .

For any x, lim
n→∞

M
(n+ 1)!

∣∣∣x(n+1)
∣∣∣ = 0. Thus by the

Squeeze Theorem, we conclude that lim
n→∞

Rn(x) = 0 for
all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

15. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣∣f (n+1)(z)
∣∣∣

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ ,

where z is between 0 and x. Since
∣∣∣f (n+1)(z)

∣∣∣ = n!
(z+1)n+1 ,

|Rn(x)| ≤
1

n+ 1

(
|x|

min z+ 1

)n+1

.

If 0 < x < 1, then 0 < z < x and
f (n+1)(z) = n!

(z+1)n+1 < n!. Thus

|Rn(x)| ≤
n!

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ = xn+1

n+ 1
.

For a fixed x < 1,

lim
n→∞

xn+1

n+ 1
= 0.

17. Given cos x =
∞∑
n=0

(−1)n x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n (−x)2n

(2n)!
=

∞∑
n=0

(−1)n x2n

(2n)!
= cos x,

as all powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

(
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n (2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n x2n

(2n)!
= cos x. (The

summation still starts at n = 0 as there was no constant
term in the expansion of sin x).

21. 1+ x
2
− x2

8
+

x3

16
− 5x4

128

23. 1+ x
3
− x2

9
+

5x3

81
− 10x4

243

25.
∞∑
n=0

(−1)n (x
2)2n

(2n)!
=

∞∑
n=0

(−1)n x4n

(2n)!
.

27.
∞∑
n=0

(−1)n (2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 + x3

3
− x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈∫ √

π

0

(
x2 − x6

6
+

x10

120
− x14

5040

)
dx = 0.8877

Chapter 10

Exercises 10.0
1. y = 1

2 (x− 3)2 + 3
2

2. y = −1
12 (x+ 1)2 − 1

3. x = − 1
4 (y− 5)2 + 2

4. x = y2

5. y = − 1
4 (x− 1)2 + 2

6. x = − 1
12y

2

7. y = 4x2

8. x = − 1
8 (y− 3)2 + 2

9.

−2 2 4

2

4

x

y

10.

−5 5

−6

−4

−2

x

y

11. (x+1)2
9 + (y−2)2

4 = 1

12. (x−1)2
1/4 + y2

9 = 1

13. (x−1)2
2 + (y− 2)2 = 1

14. x2
3 + y2

5 = 1

15. x2
4 + (y−3)2

6 = 1

16. (x−2)2
4 + (y−2)2

4 = 1

17. x2 − y2
3 = 1

18. y2 − x2
24 = 1

19. (y−3)2
4 − (x−1)2

9 = 1
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20. (x−1)2
9 − (y−3)2

4 = 1

21.

−5 5

−5

x

y

22.

−10 −5 5

5

10

x

y

23. x2
4 − y2

3 = 1

24. x2
3 − (y−1)2

9 = 1

25. (y− 2)2 − x2
10 = 1

26. 4y2 − x2
4 = 1

Exercises 10.1

1. T

3.
√
2

5. 4/3

7. 109/2

9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
∫ 1
0

√
1+ 4x2 dx

15.
∫ 1
0

√
1+ 1

4x dx

17.
∫ 1
−1

√
1+ x2

1−x2 dx

19.
∫ 2
1

√
1+ 1

x4 dx

21. 1.4790

23. Simpson’s Rule fails, as it requires one to divide by 0.
However, recognize the answer should be the same as for
y = x2; why?

25. Simpson’s Rule fails.

27. 1.4058

29. 2π
∫ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
∫ 1
0
√
x
√

1+ 1/(4x) dx = π/6(5
√
5− 1)

Exercises 10.2

1. T

3. rectangular

5.

5 10

−5

x

y

7.

1 2

1

2

x

y

9.

−10 −5 5 10

2

4

6

8

x

y

11.

−5 5

−5

5

x

y

13.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y
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15.

5 10

−10

10

x

y

17.

−1 1

−1

1

x

y

19. (a) Traces the parabola y = x2, moves from left to right.
(b) Traces the parabola y = x2, but only from−1 ≤ x ≤

1; traces this portion back and forth infinitely.
(c) Traces the parabola y = x2, but only for 0 < x.

Moves left to right.
(d) Traces the parabola y = x2, moves from right to left.

21. Possible Answer: x = t, y = 9− 4t

23. Possible Answer: x = −9+ 7 cos t, y = 4+ 7 sin t

25. Possible Answer: x = 5
4 t+

11
4 , y = t, [−3, 1]

27. Possible Answer: x = t, y = t2 + 2t, (−∞,−1]

29. x = (t+ 11)/6, y = (t2 − 97)/12. At t = 1, x = 2,
y = −8.
y′ = 6x− 11; when x = 2, y′ = 1.

31. x = cos−1 t, y =
√
1− t2. At t = 1, x = 0, y = 0.

y′ = cos x; when x = 0, y′ = 1.
33. Possible answers:

(a) x = sin t, y = cos t, [π/2, 5π/2]
(b) x = cos t, y = sin t, [0, 2π]
(c) x = sin t, y = cos t, [π/2, 9π/2]
(d) x = cos t, y = sin t, [0, 4π]

35. x = 4t, y = −16t2 + 64t

37. x = 10t, y = −16t2 + 320t

39. x = 3 cos(2πt) + 1, y = 3 sin(2πt) + 1; other answers
possible

41. x = 5 cos t, y =
√
24 sin t; other answers possible

43. x = 2 tan t, y = ±6 sec t; other answers possible

45. y = −1.5x+ 8.5

47. (x−1)2
16 + (y+2)2

9 = 1

49. y = 2x+ 3

51. y = e2x − 1

53. x2 − y2 = 1
55. y = b

a (x− x0) + y0; line through (x0, y0) with slope b/a.

57. (x−h)2

a2 + (y−k)2

b2 = 1; ellipse centered at (h, k) with
horizontal axis of length 2a and vertical axis of length 2b.

59. t = ±1
61. t = π/2, 3π/2
63. t = −1
65. t = kπ for integer values of k

Exercises 10.3
1. F
3. F
5. (a) dy

dx = 2t
(b) Tangent line: y = 2(x − 1) + 1; normal line: y =

−1/2(x− 1) + 1

7. (a) dy
dx = 2t+1

2t−1

(b) Tangent line: y = 3x+2; normal line: y = −1/3x+2

9. (a) dy
dx = csc t

(b) t = π/4: Tangent line: y =
√
2(x−

√
2)+1; normal

line: y = −1/
√
2(x−

√
2) + 1

11. (a) dy
dx = cos t sin(2t)+2 sin t cos(2t)

− sin t sin(2t)+2 cos t cos(2t)

(b) Tangent line: y = x−
√
2; normal line: y = −x

13. horizontal: t = 0; vertical: none
15. horizontal: t = −1/2; vertical: t = 1/2
17. horizontal: none; vertical: t = 0
19. The solution is non‐trivial; use identities

sin(2t) = 2 sin t cos t and
cos(2t) = cos2 t− sin2 t = 1− 2 sin2 t to rewrite
dy/ dt = 2 sin t(2 cos2 t− sin2 t) and
dx/ dt = 2 cos t(1− 3 sin2 t). Horizontal: sin t = 0 when
t = 0, π, 2π, and 2 cos2 t− sin2 t = 0 when
t = tan−1(

√
2), π ± tan−1(

√
2), 2π − tan−1(

√
2).

Vertical: cos t = 0 when t = π/2, 3π/2, and
1− 3 sin2 t = 0 when
t = sin−1(1/

√
3), π − sin−1(1/

√
3).

21. t0 = 0; limt→0
dy
dx = 0.

23. t0 = 1; limt→1
dy
dx = ∞.

25. d2y
dx2 = 2; always concave up

27. d2y
dx2 = − 4

(2t−1)3 ; concave up on (−∞, 1/2); concave
down on (1/2,∞).

29. d2y
dx2 = − cot3 t; concave up on (−π/2, 0); concave down
on (0, π/2).

31. d2y
dx2 = 4(13+3 cos(4t))

(cos t+3 cos(3t))3 , obtained with a computer algebra
system; concave up on

(
− tan−1( 1√

2 ), tan
−1( 1√

2 )
)
,

concave down on
(
− π

2 ,− tan−1( 1√
2 )
)
;
(
tan−1( 1√

2 ),
π
2

)
33. L = 6π
35. L = 2

√
34
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37. 2π

39. −
√
10
3

+ ln(3+
√
10) +

√
2− ln(1+

√
2)

41. L ≈ 2.4416 (actual value: L = 2.42211)

43. L ≈ 4.19216 (actual value: L = 4.18308)

45. The answer is 16π for both (of course), but the integrals
are different.

47. 6πa2
5

49. SA ≈ 8.50101 (actual value SA = 8.02851

51. 1
2 sinh θ cosh θ −

1
2θ

Exercises 10.4
1. Answers will vary.

3. T

5.

1 2O
A

B

C

D

7. A(2.5, π/4) and A(−2.5, 5π/4);
B(−1, 5π/6) and B(1, 11π/6);
C(3, 4π/3) and C(−3, π/3);
D(1.5, 2π/3) and D(−1.5, 5π/3)

9. A = (
√
2,
√
2);

B = (
√
2,−

√
2);

C = (
√
5,−0.46);

D = (
√
5, 2.68)

11.

1 2

1

2

x

y

13.

−2 2

−2

−1

1

2

x

y

15.

−2 2

−2

2

x

y

17.

−2 2

−2

2

x

y

19.

−1 1

−1

1

x

y

21.

−1 1

−1

1

x

y

23.

−2 2

2

3

1

x

y

25.

−2 −1

−1

1

x

y

27.

−1 1

−1

−0.5

0.5

1

x

y

29.

−5 5

−4

−2

2

4

x

y
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31.

−5 5

−4

−2

2

4

x

y

33. (x− 1)2 + y2 = 1

35. x2 + (y− 3
2 )

2 = 9
4

37. (x− 1/2)2 + (y− 1/2)2 = 1/2

39. x = 3

41. x4 + x2y2 − y2 = 0

43. x2 + y2 = 4

45. θ = π/4

47. r = 5 sec θ

49. r = cos θ/ sin2 θ

51. r =
√
7

53. P(
√
3/2, π/6), P(0, π/2), P(−

√
3/2, 5π/6)

55. P(0, 0) = P(0, π/2), P(
√
2, π/4)

57. P(
√
2/2, π/12), P(−

√
2/2, 5π/12), P(

√
2/2, 3π/4), and

the origin.
59. For all points, r = 1;

θ = π
12 ,

5π
12 ,

7π
12 ,

11π
12 ,

13π
12 ,

17π
12 ,

19π
12 ,

23π
12 .

61. Answers will vary. Ifm and n do not have any common
factors, then an interval of 2nπ is needed to sketch the
entire graph.

Exercises 10.5
1. Using x = r cos θ and y = r sin θ, we can write

x = f(θ) cos θ, y = f(θ) sin θ.
3. (a) dy

dx = − cot θ

(b) tangent line: y = −(x−
√
2/2)+

√
2/2; normal line:

y = x

5. (a) dy
dx = cos θ(1+2 sin θ)

cos2 θ−sin θ(1+sin θ)

(b) tangent line: x = 3
√
3/4; normal line: y = 3/4

7. (a) dy
dx = θ cos θ+sin θ

cos θ−θ sin θ

(b) tangent line: y = −(2/π)x + π/2; normal line:
y = (π/2)x+ π/2

9. (a) dy
dx = 4 sin(θ) cos(4θ)+sin(4θ) cos(θ)

4 cos(θ) cos(4θ)−sin(θ) sin(4θ)

(b) tangent line: y = 5
√
3(x +

√
3/4) − 3/4; normal

line: y = −1/5
√
3(x+

√
3/4)− 3/4

11. horizontal: θ = π/2, 3π/2;
vertical: θ = 0, π, 2π

13. horizontal: θ = tan−1(1/
√
5), π/2,

π − tan−1(1/
√
5), π + tan−1(1/

√
5), 3π/2, 2π −

tan−1(1/
√
5);

vertical: θ = 0, tan−1(
√
5), π − tan−1(

√
5), π, π +

tan−1(
√
5), 2π − tan−1(

√
5)

15. In polar: θ = 0 ∼= θ = π
In rectangular: y = 0

17. In polar: θ = π
4 and θ = − π

4
In rectangular: y = x and y = −x.

19. area = 4π
3 + 2

√
3

21. area = π/12
23. area = 3π/2
25. area = 2π + 3

√
3/2

27. area = 1
29. area = 1

32 (4π − 3
√
3)

31. x ′(θ) = f ′(θ) cos θ − f(θ) sin θ,
y ′(θ) = f ′(θ) sin θ + f(θ) cos θ. Square each and add;
applying the Pythagorean Theorem twice achieves the
result.

33. 4π
35. L ≈ 2.2592; (actual value L = 2.22748)
37. SA = 16π
39. SA = 32π/5
41. SA = 36π
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INDEX

!, see factorial

Absolute Convergence Theorem, 510
Absolute Value Theorem, 466
Alternating Harmonic Series, 508, 535
Alternating Series Test

for series, 506
analytic function, 557
arc length, 575, 604, 629

Binomial Series, 557
bounded sequence, 469

convergence, 470

concavity, 599
conic sections, 565

degenerate, 565
ellipse, 567
hyperbola, 569
parabola, 566

Constant Multiple Rule
of series, 483

convergence
absolute, 509, 510
Alternating Series Test, 506
conditional, 509
Direct Comparison Test, 496

for integration, 442
Integral Test, 490
interval of, 529
Limit Comparison Test, 499

for integration, 443
of geometric series, 479
of improper int., 436, 441–443
of monotonic sequences, 472
of p‐series, 493
of power series, 528
of sequence, 464, 470
of series, 476
radius of, 529
Ratio Comparison Test, 517
Root Comparison Test, 520

curve
parametrically defined, 583
rectangular equation, 583
smooth, 591

cusp, 591

derivative
hyperbolic funct., 367
inverse hyper., 371
inverse trig., 351
parametric equations, 595
power series, 532

Direct Comparison Test
for integration, 442
for series, 496

directrix, 566
divergence

Alternating Series Test, 506
Direct Comparison Test, 496

for integration, 442
Integral Test, 490
Limit Comparison Test, 499

for integration, 443
of geometric series, 479
of improper int., 436, 441–443
of p‐series, 493
of sequence, 464
of series, 476
Ratio Comparison Test, 517
Root Comparison Test, 520

elementary function, 447
ellipse

definition, 567
standard equation, 568

factorial, 462
focus, 566, 567, 569

Gabriel’s Horn, 580
gamma function, 446
geometric sequence, 468
geometric series, 478, 479

hyperbola
definition, 569
standard equation, 570

hyperbolic function
definition, 364
derivatives, 367
identities, 367
integrals, 367
inverse, 368

derivative, 371
integration, 371
logarithmic def., 370

improper integration, 436, 439
indeterminate form, 378, 380
Integral Test, 490
integration

arc length, 575
by parts, 384
hyperbolic funct., 367
improper, 436, 439, 442, 443
inverse hyper., 371

A.17



numerical, 447
Left Hand Rule, 455, 456
Left/Right Hand Rule, 447
Midpoint Rule, 455, 456
Right Hand Rule, 455, 456
Simpson’s Rule, 453, 455, 456
Trapezoidal Rule, 450, 455, 456

of power series, 532
of trig. powers, 400
of trig. powers, 394
surface area, 578, 605, 632
trig. subst., 408

interval of convergence, 529
irreducible quadratic, 416

Left Hand Rule, 447
Left/Right Hand Rule, 455

error bounds, 456
L’Hôpital’s Rule, 375, 376
limit

Absolute Value Theorem, 466
indeterminate form, 378, 380
of sequence, 464

Limit Comparison Test
for integration, 443
for series, 499

logarithmic differentiation, 361

Maclaurin Polynomial, see also Taylor Polynomial
definition, 546

Maclaurin Series, see also Taylor Series
definition, 554

Midpoint Rule, 455
error bounds, 456

monotonic sequence, 470

normal line, 596
numerical integration, 447

Left Hand Rule, 455
error bounds, 456

Left/Right Hand Rule, 447
Midpoint Rule, 455

error bounds, 456
Right Hand Rule, 455

error bounds, 456
Simpson’s Rule, 453, 455

error bounds, 456
Trapezoidal Rule, 450, 455

error bounds, 456

one‐to‐one, 343

p‐series, 493
parabola

definition, 566
general equation, 567

parametric equations
arc length, 604
concavity, 599
definition, 583
finding dy

dx , 595

finding d2y
dx2 , 599

normal line, 596
surface area, 605
tangent line, 595

polar
coordinates, 609
function

arc length, 629
gallery of graphs, 616
surface area, 632

functions, 612
area, 625
area between curves, 627
finding dy

dx , 622
graphing, 612

polar coordinates, 609
plotting points, 609

power series, 527
algebra of, 560
convergence, 528
derivatives and integrals, 532

radius of convergence, 529
Ratio Comparison Test

for series, 517
rearrangements of series, 510
Right Hand Rule, 447
Root Comparison Test

for series, 520

sawtooth wave, 393
sequence

Absolute Value Theorem, 466
positive, 496

sequences
boundedness, 469
convergent, 464, 470, 472
definition, 462
divergent, 464
limit, 464
limit properties, 467
monotonic, 470

series
absolute convergence, 509
Absolute Convergence Theorem, 510
alternating, 505

Approximation Theorem, 511
Alternating Series Test, 506
Binomial, 557
conditional convergence, 509
convergent, 476
definition, 476
Direct Comparison Test, 496
divergent, 476
geometric, 478, 479
Integral Test, 490
interval of convergence, 529
Limit Comparison Test, 499
Maclaurin, 554
p‐series, 493



partial sums, 476
power, 527, 528

derivatives and integrals, 532
properties, 483
radius of convergence, 529
Ratio Comparison Test, 517
rearrangements, 510
Root Comparison Test, 520
Taylor, 554
telescoping, 481

Simpson’s Rule, 453, 455
error bounds, 456

smooth curve, 591
Sum/Difference Rule

of series, 483
surface area

solid of revolution, 578, 605, 632

tangent half‐angle substitution, 434
tangent line, 595, 622
Taylor Polynomial

definition, 546
Taylor’s Theorem, 549

Taylor Series
common series, 559
definition, 554
equality with generating function, 556

Taylor’s Theorem, 549
telescoping series, 481
Trapezoidal Rule, 450, 455

error bounds, 456
triangle wave, 393

unbounded sequence, 469





Differentiation Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(f−1(x)) =
1

f ′(f−1(x))

7.
d
dx

(c) = 0

8.
d
dx

(x) = 1

9.
d
dx

(xn) = nxn−1

10.
d
dx

((f(x))n) = n(f(x))n−1f ′(x)

11.
d
dx

(ex) = ex

12.
d
dx

(ef(x)) = ef(x)f ′(x)

13.
d
dx

(ax) = ln a · ax

14.
d
dx

(ln x) = 1
x

15.
d
dx

(ln f(x)) = 1
f(x) f

′(x)

16.
d
dx

(loga x) = 1
x ln a

17.
d
dx

(sin x) = cos x

18.
d
dx

(cos x) = − sin x

19.
d
dx

(csc x) = − csc x cot x

20.
d
dx

(sec x) = sec x tan x

21.
d
dx

(tan x) = sec2 x

22.
d
dx

(cot x) = − csc2 x

23.
d
dx

(sin−1 x) = 1√
1−x2

24.
d
dx

(cos−1 x) = −1√
1−x2

25.
d
dx

(csc−1 x) = −1
|x|
√

x2−1

26.
d
dx

(sec−1 x) = 1
|x|
√

x2−1

27.
d
dx

(tan−1 x) = 1
1+x2

28.
d
dx

(cot−1 x) = −1
1+x2

29.
d
dx

(cosh x) = sinh x

30.
d
dx

(sinh x) = cosh x

31.
d
dx

(tanh x) = sech2 x

32.
d
dx

(sech x) = − sech x tanh x

33.
d
dx

(csch x) = − csch x coth x

34.
d
dx

(coth x) = − csch2 x

35.
d
dx

(cosh−1 x) = 1√
x2−1

36.
d
dx

(sinh−1 x) = 1√
x2+1

37.
d
dx

(sech−1 x) = −1
x
√

1−x2

38.
d
dx

(csch−1 x) = −1
|x|
√

1+x2

39.
d
dx

(tanh−1 x) = 1
1−x2

40.
d
dx

(coth−1 x) = 1
1−x2

Integration Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

(f(x)± g(x)) dx =
∫

f(x) dx±
∫

g(x) dx

3.
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx

4.
∫

f(g(x))g′(x) dx =
∫

f(u) du; u = g(x)

5.
∫

0 dx = C

6.
∫

1 dx = x+ C

7.
∫

xn dx =
1

n+ 1
xn+1 + C; n ̸= −1

8.
∫

ex dx = ex + C

9.
∫

ax dx =
1
ln a

· ax + C

10.
∫

ln x dx = x ln x− x+ C

11.
∫ 1

x
dx = ln |x|+ C

12.
∫

cos x dx = sin x+ C

13.
∫

sin x dx = − cos x+ C

14.
∫

tan x dx = − ln |cos x|+ C

15.
∫

sec x dx = ln |sec x+ tan x|+ C

16.
∫

csc x dx = − ln |csc x+ cot x|+ C

17.
∫

cot x dx = ln |sin x|+ C

18.
∫

sec2 x dx = tan x+ C

19.
∫

csc2 x dx = − cot x+ C

20.
∫

sec x tan x dx = sec x+ C

21.
∫

csc x cot x dx = − csc x+ C

22.
∫

cos2 x dx =
x
2
+

sin(2x)
4

+C

23.
∫

sin2 x dx =
x
2
−

sin(2x)
4

+C

24.
∫ 1

x2 + a2
dx =

1
a
tan−1 x

a
+ C

25.
∫ 1

√
a2 − x2

dx = sin−1 x
|a|

+ C

26.
∫ 1

x
√
x2 − a2

dx =
1
|a|

sec−1
∣∣∣∣ xa

∣∣∣∣+C

27.
∫

cosh x dx = sinh x+ C

28.
∫

sinh x dx = cosh x+ C

29.
∫

tanh x dx = ln(cosh x) + C

30.
∫

coth x dx = ln |sinh x|+ C

31.
∫

sec3 x dx =
1
2
(sec x tan x+ ln |sec x+ tan x|) + C

32.
∫ √

x2 + a2 dx =
x
2

√
x2 + a2 +

a2

2
ln
(
x+

√
x2 + a2

)
+ C

33.
∫ 1

√
x2 − a2

dx = cosh−1 x
a
+ C = ln

(
x+

√
x2 − a2

)
+ C; 0 < a < x

34.
∫ 1

√
x2 + a2

dx = sinh−1 x
a
+ C = ln

(
x+

√
x2 + a2

)
+ C; 0 < a

35.
∫ 1

a2 − x2
dx =

{
1
a tanh

−1 x
a + C, |x| < |a|

1
a coth

−1 x
a + C, |a| < |x|

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

36.
∫ 1

x
√
a2 − x2

dx = −
1
a
sech−1 |x|

a
+ C =

1
a
ln
∣∣∣∣ x
a+

√
a2 − x2

∣∣∣∣+ C; 0 < |x| < a

37.
∫ 1

x
√
x2 + a2

dx = −
1
a
csch−1 |x|

a
+ C =

1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C; x ̸= 0, a > 0
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Definitions of the Trigonometric Functions
Unit Circle Definition

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

x

y

(x, y)

y

x

θ

Right Triangle Definition

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Identities
Pythagorean Identities

sin2 x+ cos2 x = 1
tan2 x+ 1 = sec2 x
1+ cot2 x = csc2 x

Cofunction Identities
sin( π2 − x) = cos x csc( π2 − x) = sec x
cos( π2 − x) = sin x sec( π2 − x) = csc x
tan( π2 − x) = cot x cot( π2 − x) = tan x

Even/Odd Identities
sin(−x) = − sin x csc(−x) = − csc x
cos(−x) = cos x sec(−x) = sec x
tan(−x) = − tan x cot(−x) = − cot x

Sum to Product Formulas

sin x+ sin y = 2 sin( x+y
2 ) cos( x−y

2 )

sin x− sin y = 2 sin( x−y
2 ) cos( x+y

2 )

cos x+ cos y = 2 cos( x+y
2 ) cos( x−y

2 )

cos x− cos y = 2 sin( x+y
2 ) sin( y−x

2 )

Power‐Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Double Angle Formulas
sin 2x = 2 sin x cos x
cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1
= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Product to Sum Formulas

sin x sin y = 1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y = 1

2
(
cos(x− y) + cos(x+ y)

)
sin x cos y = 1

2
(
sin(x+ y) + sin(x− y)

)
Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y
cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y

Domains and ranges of inverse trigonometric functions
Inverse Function Domain Range Inverse Function Domain Range

sin−1 x [−1, 1] [−π/2, π/2] csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]
cos−1 x [−1, 1] [0, π] sec−1 x (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]
tan−1 x (−∞,∞) (−π/2, π/2) cot−1 x (−∞,∞) (0, π)



Areas and Volumes

Triangles
h = a sin θ

Area =
1
2
bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone

Volume =
1
3
πr2h

Surface Area =

πr
√

r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h
Surface Area =

2πrh+ 2πr2
h

r

Trapezoids

Area =
1
2
(a+ b)h

b

a

h

Sphere

Volume =
4
3
πr3

Surface Area = 4πr2
r

Circles
Area = πr2

Circumference = 2πr r

General Cone
Area of Base = A

Volume =
1
3
Ah

h

A

Sectors of Circles
θ in radians

Area =
1
2
θr2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A
Volume = Ah

h

A



Algebra
Factors and Zeros of Polynomials

Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zerosmay be imaginary, a real polynomial
of odd degree must have at least one real zero.

Quadratic Formula

If p(x) = ax2 + bx+ c, then the zeros of p are x =
−b±

√
b2 − 4ac
2a

Special Factoring

x2 − a2 = (x− a)(x+ a) x3 ± a3 = (x± a)(x2 ∓ ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)

Binomial Theorem

(x+ y)2 = x2 + 2xy+ y2 (x+ y)3 = x3 + 3x2y+ 3xy2 + y3

(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x+ y)n =
n∑

k=0

(
n
k

)
xn−kyk

Rational Zero Theorem

If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s, where
r is a factor of a0 and s is a factor of an.

Factoring by Grouping

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations

ab+ ac = a(b+ c)
a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(

a
b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n(a

b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Additional Formulas

Summation Formulas
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule∫ b

a
f(x) dx ≈ ∆x

2
[f(x1) + 2f(x2) + 2f(x3) + · · ·+ 2f(xn) + f(xn+1)]

with Error ≤ (b− a)3

12n2
[max |f ′′(x)|]

Simpson’s Rule∫ b

a
f(x) dx ≈ ∆x

3
[f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + · · ·+ 2f(xn−1) + 4f(xn) + f(xn+1)]

with Error ≤ (b− a)5

180n4
[
max

∣∣f(4)(x)∣∣]

Arc Length

L =
∫ b

a

√
1+ f ′(x)2 dx

Work Done by a Variable Force

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x)

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n + · · ·

Standard Form of Conic Sections

Parabola Ellipse Hyperbola
Vertical axis Horizontal axis Foci and vertices Foci and vertices

on x‐axis on y‐axis

y =
x2

4p
x =

y2

4p
x2

a2
+

y2

b2
= 1

x2

a2
− y2

b2
= 1

y2

b2
− x2

a2
= 1



Summary of Tests for Series

Notation: Infinite series
∞∑
n=1

an with sequence of partial sums {Sn} = {a1 + a2 + a3 + · · ·+ an}

Test Series Convergence or Divergence Comment

Definition of
Series

∞∑
n=1

an series converges if and
only if {Sn} converges

used when a formula
for Sn can be found

Divergence
Test

∞∑
n=1

an diverges if lim
n→∞

an ̸= 0 no conclusion if
lim

n→∞
an = 0

Alternating
Series

±
∞∑
n=1

(−1)nbn
converges if bn > 0, {bn} is
decreasing, and lim

n→∞
bn = 0

check that conditions hold
eventually; no information

about divergence

Geometric
Series

∞∑
n=0

arn converges if and
only if |r| < 1 Sum=

a
1− r

Telescoping
Series

∞∑
n=1

bn − bn+m
converges if and only
if {Sn} converges

most terms of Sn
subtract away

p‐Series
∞∑
n=1

1
(an+ b)p

converges if and
only if p > 1 assumes an+ b ̸= 0

p‐Series For
Logarithms

∞∑
n=1

1
(an+ b)(log n)p

converges if and
only if p > 1

logarithm’s base doesn’t
affect convergence.

Integral Test
∞∑
n=1

an
converges if and only if∫ ∞

k
a(n) dn converges

an = a(n)must be
positive and decreasing

eventually

Direct
Comparison

∞∑
n=1

an,
∞∑
n=1

bn

0 < an ≤ bn

∑
bn converges ⇒

∑
an converges∑

an diverges ⇒
∑

bn diverges
consider geometric

or p‐series

Limit
Comparison

∞∑
n=1

an,
∞∑
n=1

bn

0 < an, bn

if lim
n→∞

an/bn = L
L > 0: both converge or diverge together
L = 0:

∑
bn converges ⇒

∑
an converges

L = ∞:
∑

bn diverges ⇒
∑

an diverges

consider geometric
or p‐series

Ratio/Root
Test

∞∑
n=1

an L =

 lim
n→∞

|an+1/an| Ratio Test

lim
n→∞

|an|1/n Root Test
L < 1: converges

L > 1 or L = ∞: diverges
L = 1: test indeterminate

use Ratio Test for
products, factorials, or

powers in terms

use Root Test for series of
the form an = (bn)n

Absolute convergence:
∞∑
n=1

|an| converges (and by Absolute Convergence Theorem,
∞∑
n=1

an converges)

Conditional convergence:
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges
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