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PREFACE

A Note on Using this Text
Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay better understand what you will find beyond this
page.

This text comprises a three‐volume series on Calculus. The first part covers
material taught in many “Calculus 1” courses: limits, derivatives, and the basics
of integration, found in Chapters 1 through 6. The second text covers materi‐
al often taught in “Calculus 2”: integration and its applications, along with an
introduction to sequences, series and Taylor Polynomials, found in Chapters 7
through 10. The third text covers topics common in “Calculus 3” or “Multi‐
variable Calculus”: parametric equations, polar coordinates, vector‐valued func‐
tions, and functions of more than one variable, found in Chapters 11 through 15.
All three are available separately for free.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased separately.

A result of this splitting is that sometimes material is referenced that is not
contained in the present text. The context should make it clear whether the
“missing” material comes before or after the current portion. Downloading the
appropriate pdf, or the entireAPEX Calculus LT pdf, will give access to these topics.

For Students: How to Read this Text
Mathematics textbooks have a reputation for being hard to read. High‐level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower‐level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming materi‐
al, hopefully setting the stage for “why you should care,” and ends with a look
ahead to see how the just‐learned material helps address future problems. Ad‐
ditionally, some chapters include a section zero, which provides a basic review
and practice problems of pre‐calculus skills. Since this content is a pre‐requisite
for calculus, reviewing and mastering these skills are considered your responsi‐
bility. This means that it is your responsibility to seek assistance outside of class
from your instructor, a math resource center or other math tutoring available
on‐campus. A solid understanding of these skills is essential to your success in
solving calculus problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en‐
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is



helpful; sometimes it is confusing. When the steps are illustrating a new tech‐
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.

Some proofs have been delayed until later (or omitted completely). In math‐
ematics, proving something is always true is extremely important, and entails
much more than testing to see if it works twice. However, students often are
confused by the details of a proof, or become concerned that they should have
been able to construct this proof on their own. To alleviate this potential prob‐
lem, we do not include the more difficult proofs in the text. The interested read‐
er is highly encouraged to find other proofs online or from their instructor. In
most cases, one is very capable of understanding what a theorem means and
how to apply it without knowing fully why it is true.

Work through the examples. The best way to learn mathematics is to do it.
Reading about it (or watching someone else do it) is a poor substitute. For this
reason, every page has a place for you to put your notes so that you can work
out the examples. That being said, sometimes it is useful to watch someone
work through an example. For this reason, this text also provides links to online
videos where someone is working through a similar problem. If you want even
more videos, these are generally chosen from

• Khan Academy: https://www.khanacademy.org/
• Math Doctor Bob: http://www.mathdoctorbob.org/
• Just Math Tutorials: http://patrickjmt.com/ (unfortunately, they’re
not well organized)

Some other sites you may want to consider are
• Larry Green’s Calculus Videos: http://www.ltcconline.net/greenl/
courses/105/videos/VideoIndex.htm

• Mathispower4u: http://www.mathispower4u.com/
• Yay Math: http://www.yaymath.org/ (for prerequisite material)

All of these sites are completely free (although some will ask you to donate).
Here’s a sample one:

Watch the video:
Practical Advice for Those Taking College Calculus
at
https://youtu.be/ILNfpJTZLxk

Thanks from Greg Hartman
There aremanypeoplewhodeserve recognition for the important role they have
played in the development of this text. First, I thank Michelle for her support
and encouragement, even as this “project from work” occupied my time and
attention at home. Many thanks to Troy Siemers, whose most important con‐
tributions extend far beyond the sections he wrote or the 227 figures he coded
in Asymptote for 3D interaction. He provided incredible support, advice and
encouragement for which I am very grateful. My thanks to Brian Heinold and
Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for read‐
ing through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
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numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc III while I was still writing the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu‐
nity far above & beyond what I expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. I am blessed to
have so many people give of their time to make this book better.

APEX — Affordable Print and Electronic teXts

APEX is a consortiumof authorswho collaborate to produce high‐quality, low‐cost
textbooks. The current textbook‐writing paradigm is facing a potential revolu‐
tion as desktop publishing and electronic formats increase in popularity. How‐
ever, writing a good textbook is no easy task, as the time requirements alone
are substantial. It takes countless hours of work to produce text, write exam‐
ples and exercises, edit and publish. Through collaboration, however, the cost
to any individual can be lessened, allowing us to create texts that we freely dis‐
tribute electronically and sell in printed form for an incredibly low cost. Having
said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Calcu‐
lus would not exist had not the Virginia Military Institute, through a generous
Jackson‐Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons Attri‐
bution — Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at https://github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.
Greg Hartman

Creating APEX LT
Starting with the source at https://github.com/APEXCalculus, faculty at
the University of North Dakota made several substantial changes to create APEX
Late Transcendentals. The most obvious change was to rearrange the text to
delay proving the derivative of transcendental functions until Calculus 2. UND
added Sections 7.1 and 7.3, adapted several sections from other resources, cre‐
ated the prerequisite sections, included links to videos andGeogebra, and added
several examples and exercises. In the end, every section had some changes
(some more substantial than others), resulting in a document that is about 10%
longer. The source files can now be found at
https://github.com/teepeemm/APEXCalculusLT_Source.

Extra thanks are due to Michael Corral for allowing us to use portions of his
Vector Calculus, available at www.mecmath.net/ (specifically, Section 13.9 and
the Jacobian in Section 14.7) and to Paul Dawkins for allowing us to use portions
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of his online math notes from tutorial.math.lamar.edu/ (specifically, Sec‐
tions 8.5 and 9.7, as well as “Area with Parametric Equations” in Section 10.3).
The work on Calculus III was partially supported by the NDUS OER Initiative.

Electronic Resources
A distinctive feature of APEX is interactive, 3D graphics in the .pdf version. Nearly
all graphs of objects in space can be rotated, shifted, and zoomed in/out so the
reader can better understand the object illustrated.

Currently, the only pdf viewers that support these 3D graphics for comput‐
ers are Adobe Reader & Acrobat. To activate the interactive mode, click on the
image. Once activated, one can click/drag to rotate the object and use the scroll
wheel on amouse to zoom in/out. (A great way to investigate an image is to first
zoom in on the page of the pdf viewer so the graphic itself takes up much of the
screen, then zoom inside the graphic itself.) A CTRL‐click/drag pans the object
left/right or up/down. By right‐clicking on the graph one can access a menu of
other options, such as changing the lighting scheme or perspective. One can
also revert the graph back to its default view. If you wish to deactivate the inter‐
activity, one can right‐click and choose the “Disable Content” option.

The situation is more interesting for tablets and smart‐
phones. The 3D graphics files have been arrayed at https:
//sites.und.edu/timothy.prescott/apex/prc/. At
the bottom of the page are links to Android and iOS apps
that can display the interactive files. The QR code to the
right will take you to that page.

Additionally, a web version of the book is available at https://sites.und.
edu/timothy.prescott/apex/web/. While we have striven to make the pdf
accessible for non‐print formats, html is far better in this regard.
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1.0. Chapter Prerequisites

1.0 Chapter Prerequisites
The material in this section provides a basic review of and practice problems for
pre‐calculus skills essential to your success in Calculus. You should take time to
review this section and work the suggested problems (checking your answers
against those in the back of the book). Since this content is a pre‐requisite for
Calculus, reviewing andmastering these skills are considered your responsibility.
This means thatminimal, and in some cases no, class timewill be devoted to this
section. When you identify areas that you need help with we strongly urge you
to seek assistance outside of class from your instructor or other student tutoring
service.

Functions
A function f is a rule that assigns each element x from a set (called the domain)
to exactly one element, called f(x), in another set. Unless we say otherwise, the
domain is the set of all real numbers for which the rule makes sense and defines
a real number. All possible values of f(x) are called the range of f. We use four
ways to represent a function.

• By a graph

• By an explicit formula

• By a table of values

• By a verbal description

Throughout the book we will use several representations of any given func‐
tion to help give us a better understanding of the problem. The graphs in Fig‐
ure 1.0.1 contain most of the base functions we can use to build other functions
using transformations.
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Figure 1.0.1: Basic Function Graphs

Notes:
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Chapter 1 Limits

We will often transform these functions into other functions as given in the
next two figures.

The function shifts f(x)

y = f(x) + c c units upward
y = f(x)− c c units downward
y = f(x+ c) c units left
y = f(x− c) c units right

Figure 1.0.2: Translations of Basic Functions with c > 0
The function transforms f(x) by

y = cf(x) stretching vertically by a factor of c
y = 1

c f(x) shrinking vertically by a factor of c
y = f(cx) shrinking horizontally by a factor of c
y = f( xc ) stretching horizontally by a factor of c
y = −f(x) reflecting about the x‐axis
y = f(−x) reflecting about the y‐axis

Figure 1.0.3: Scaling Basic Functions with c > 1

Domain
We said above that domain is the set of real numbers for which the function
(rule) defines a real number and makes sense. Ask yourself, “what values can
I put into the function and get a real value out?” There are generally two key
expressions that will limit the domain of a function from all real numbers. We
may not divide by zero and we may not have a negative number underneath an
even root. The following examples illustrate how we restrict the domain when
we see these expressions.

Example 1.0.1 Finding a domain
Find the domain of the function f(x) =

√
x− 4.

SOLUTION The square root of a negative number is not defined as a real
number so the domain of f will be all real numbers for which x− 4 ≥ 0 which is
x ≥ 4. In interval notation, this is [4,∞).

Example 1.0.2 Finding a domain
Find the domain of the function g(x) =

3
x2 − 9

.

SOLUTION We cannot divide by zero so we factor the denominator of

Notes:

4



1.0 Chapter Prerequisites

g and exclude those values where the denominator is zero.

g(x) =
3

x2 − 9
=

3
(x− 3)(x+ 3)

We see that x ̸= 3,−3 for g to be defined, which is written in interval notation
as (−∞,−3) ∪ (−3, 3) ∪ (3,∞).

Example 1.0.3 Finding a domain
Find the domain of the function h(x) =

1√
x2 − 4

SOLUTION For h to be defined as a real numberwemust have x2−4 > 0.
This is equivalent to (x− 2)(x+ 2) > 0 and we create a sign chart:

−2 2
x

x2 − 4 + − +

This shows that x2 − 4 will be greater than zero on (−∞,−2) ∪ (2,∞).

Notes:

5



Exercises 1.0
Problems

In Exercises 1–10, find the domain of the given function.

1. g(x) = (x− 3)2 + 5

2. f(x) =
√
x+ 7− 3

3. f(x) =
√
x2 − 6x− 7

4. f(x) = 3 |x− 2|+ 4

5. f(x) = x− 3
x2 − 4x+ 4

6. g(x) = x− 3
x2 − x+ 6

7. h(x) = sin(x+ 3π)

8. f(x) = 4x+ 1√
x2 − 4

9. h(x) = cos x
x

10. g(x) =
∣∣x2 − x− 6

∣∣
In Exercises 11–14, graph the given f.

11. f(x) =

{
x2 − 3 x < 2
x− 4 x ≥ 2

12. f(x) =


3 x ≤ −1
2− x2 −1 < x < 2
−3 x ≥ 2

13. f(x) =


x+ 3 x < −2
x2 + 4 −2 ≤ x ≤ 3
e−x x > 3

14. f(x) =

{
sin x x ≤ 0
1
2 x+ 1 x > 0

In Exercises 15–18, evaluate the expressions for the given f.

15. f(x) = 3x2 − 2x+ 6

(a) f(2)

(b) f(−1)

(c) f(a)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

16. f(x) =
√
x− 2

(a) f(4)

(b) f(−3)

(c) f(t)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

17. f(x) = 1
x

(a) f(−1)

(b) f(9)

(c) f(t+ 3)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

18. f(x) = ex

(a) f(−2)

(b) f(3)

(c) f(t+ 1)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

In Exercises 19–22, use sign diagrams to find the solutions to
the nonlinear inequalities.

19. (x− 2.13)(x− 2.12)2

(2.15− x)(x− 2.14)3
≤ 0

20. (5.678− x)3(x− 5.677)
(x− 5.679)2

≤ 0

21. 1
x− 0.3

≥ 2

22. x
0.1− x

≤ −2

6



1: LIMITS

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How‐
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× time.” But what if the rate is not constant
— can distance still be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundation of “the calculus” is the limit. It is a tool to describe a par‐
ticular behavior of a function. This chapter begins our study of the limit by ap‐
proximating its value graphically and numerically. After a formal definition of
the limit, properties are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

Notes:
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Chapter 1 Limits

1.1 An Introduction To Limits
We begin our study of limits by considering examples that demonstrate key con‐
cepts that will be explained as we progress.

Consider the function y = sin x
x . When x is near the value 1, what value (if

any) is y near?

0.5 1 1.5

0.6

0.8

1

x

y

(a)

−1 1

0.8

0.9

1

x

y

(b)

Figure 1.1.1: sin(x)/x near x = 1 (top)
and x = 0 (bottom).

While our question is not precisely formed (what constitutes “near the value
1”?), the answer does not seem difficult to find. One might think first to look at
a graph of this function to approximate the appropriate y values. Consider Fig‐
ure 1.1.1(a), where y = sin x

x is graphed. For values of x near 1, it seems that
y takes on values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it
makes sense that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value (if
any) is y near? By considering Figure 1.1.1(b), one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y → sin 0
0

→“ 0 ”
0

.

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

Finding a limit entails understanding how a function behaves near a particu‐
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f. The expression “the
limit of y as x approaches 1” describes a number, often referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definition (that will come in the next section); this is a
pseudo‐definition that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work‐
ing with the pseudo‐definition of a limit, not the actual definition.)

Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approxi‐
mate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can

Notes:
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1.1 An Introduction To Limits

provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.

x sin(x)/x

0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471
1.001 0.841170
1.01 0.838447
1.1 0.810189

(a)
x sin(x)/x

‐0.1 0.9983341665
‐0.01 0.9999833334
‐0.001 0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

(b)

Figure 1.1.2: Values of sin(x)/x with x
near 1 and near 0.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Fig‐
ure 1.1.2(a).

Notice that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the function at that particular x value; we are only concerned
with the values of the function when x is near 1.

Now approximate lim
x→0

sin(x)/x numerically. We already approximated the
value of this limit as 1 graphically in Figure 1.1.1(b). The table in Figure 1.1.2(b)
shows the value of sin(x)/x for values of x near 0. Ten places after the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our function at x = 0, only on the behavior
of the function near 0.

This numerical method gives confidence to say that 1 is a good approxima‐
tion of lim

x→0
sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.

Watch the video:
Introduction to limits at
https://youtu.be/riXcZT2ICjA

We now consider several examples that allow us to explore different aspects
of the limit concept.

Example 1.1.1 Approximating the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

SOLUTION To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

Notes:
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Chapter 1 Limits

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figure 1.1.3.

2.5 3 3.5

0.26

0.28

0.3

0.32

0.34

x

y

(a)
x x2−x−6

6x2−19x+3

2.9 0.298780
2.99 0.294569
2.999 0.294163
3 not defined
3.001 0.294073
3.01 0.293669
3.1 0.289773

(b)

Figure 1.1.3: Graphically and numerically
approximating a limit in Example 1.1.1.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a better approximation.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be‐
havior of a function. Sometimes a function may act “erratically” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing utilities are very accessible, it makes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a lim‐
it, there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

−1 −0.5 0.5 1

0.5

1

x

y

(a)
x f(x)

−0.1 0.9
−0.01 0.99
−0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

(b)

Figure 1.1.4: Graphically and numerically
approximating a limit in Example 1.1.2.

Example 1.1.2 Approximating the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =

{
x+ 1 x < 0
−x2 + 1 x > 0

.

SOLUTION Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function, so
it behaves differently on either side of 0. Figure 1.1.4(a) shows a graph of f(x),
and on either side of 0 it seems the y values approach 1. Note that f(0) is not
actually defined, as indicated in the graph with the open circle.

The table shown in Figure 1.1.4(b) shows values of f(x) for values of x near
0. It is clear that as x takes on values very near 0, f(x) takes on values very near

Notes:
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1.1 An Introduction To Limits

1. It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.

Identifying When Limits Do Not Exist

A function may not have a limit for all values of x. That is, we may not be able to
say lim

x→c
f(x) = L for some numbers L for all values of c, because there may not

be a number that f(x) is approaching. There are three common ways in which a
limit may fail to exist.

1. The function f(x)may approach different values on either side of c.

2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches c.

We’ll explore each of these in turn.

0.5 1 1.5 2

1

2

3

x

y

(a)
x f(x)

0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

(b)

Figure 1.1.5: Graphically and numerically
observing no limit as x → 1 in Exam‐
ple 1.1.3.

Example 1.1.3 Different Values Approached From Left and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =

{
x2 − 2x+ 3 x ≤ 1
x x > 1

.

SOLUTION A graph of f(x) around x = 1 and a table are given in Fig‐
ure 1.1.5. It is clear that as x approaches 1, f(x) does not seem to approach a
single number. Instead, it seems as though f(x) approaches two different num‐
bers. When considering values of x less than 1 (approaching 1 from the left), it
seems that f(x) is approaching 2; when considering values of x greater than 1
(approaching 1 from the right), it seems that f(x) is approaching 1. Recogniz‐
ing this behavior is important; we’ll study this in greater depth later. Right now,
it suffices to say that the limit does not exist since f(x) is not approaching one
value as x approaches 1.

Notes:
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Chapter 1 Limits

Example 1.1.4 The Function Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SOLUTION A graph and table of f(x) = 1/(x − 1)2 are given in Fig‐
ure 1.1.6. Both show that as x approaches 1, f(x) grows larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

0.5 1 1.5 2

50

100

x

y

(a)
x f(x)

0.9 100
0.99 10000
0.999 1× 106
1.001 1× 106
1.01 10000
1.1 100

(b)

Figure 1.1.6: Graphically and numerically
observing no limit as x → 1 in Exam‐
ple 1.1.4.

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that lim
x→1

1
(x− 1)2

does not exist.

Example 1.1.5 The Function Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

SOLUTION Two graphs of f(x) = sin(1/x) are given in Figure 1.1.7. Fig‐
ure 1.1.7(a) shows f(x) on the interval [−1, 1]; notice how f(x) seems to oscillate
near x = 0. One might think that despite the oscillation, as x approaches 0, f(x)
approaches 0. However, Figure 1.1.7(b) zooms in on sin(1/x), on the interval
[−0.1, 0.1]. Here the oscillation is evenmore pronounced. Finally, in the table in
Figure 1.1.7(c), we see sin(1/x) evaluated for values of x near 0. As x approaches
0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinitely many times. Because of this oscillation, lim

x→0
sin(

1
x
)

does not exist.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

−0.1 −5 · 10−2 5 · 10−2 0.1

−1

−0.5

0.5

1

x

y

x sin(1/x)

0.1 −0.544021
0.01 −0.506366
0.001 0.826880
0.0001 −0.305614
1.0× 10−5 0.035749
1.0× 10−6 −0.349994
1.0× 10−7 0.420548

(a) (b) (c)

Figure 1.1.7: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 1.1.5.

Notes:
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1.1 An Introduction To Limits

Limits of Difference Quotients

2 4 6

10

20

x

f

Figure 1.1.8: We can interpret a differ‐
ence quotient as the slope of a secant
line.

We have approximated limits of functions as x approached a particular number.
Wewill consider another important kind of limit after explaining a few key ideas.

Let f(x) represent the position function, in feet, of some particle that is mov‐
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the particle is at position 10 ft., and when x = 5, the particle is at 20 ft. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the particle traveled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:

f(5)− f(1)
5− 1

=
10
4

= 2.5ft/s.

2 4 6

10

20

x

f

(a)

2 4 6

10

20

x

f

(b)

2 4 6

10

20

x

f

(c)

Figure 1.1.9: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

This difference quotient can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essentially what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.1.8.

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,
consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.9. This leads us to wonder what the limit of the difference quotient is
as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

Notes:
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Chapter 1 Limits

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x‐axis would represent h values and the y‐axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.10.h f(1+h)−f(1)

h

−0.5 9.250
−0.1 8.650
−0.01 8.515
0.01 8.485
0.1 8.350
0.5 7.750

Figure 1.1.10: The difference quotient
for f(x) = −1.5x2 + 11.5x evaluated at
x = 1 and values of h near 0.

The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross‐sectional areas to volume, find the work
done by a variable force, and much more.

In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. In the following exercises, we continue our
introduction and approximate the value of limits.

Notes:
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Exercises 1.1
Terms and Concepts
1. In your own words, what does it mean to “find the limit of

f(x) as x approaches 3”?
2. An expression of the form 0

0 is called .
3. T/F: The limit of f(x) as x approaches 5 is f(5).
4. Describe three situations where lim

x→c
f(x) does not exist.

5. When x is near 0, sin x
x

is near what value?

6. In your own words, what is a difference quotient?

Problems
In Exercises 7–16, approximate the given limits both numeri‐
cally and graphically.

7. lim
x→1

(
x2 + 3x− 5

)
8. lim

x→0

(
x3 − 3x2 + x− 5

)
9. lim

x→0

x+ 1
x2 + 3x

10. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

11. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

12. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

13. lim
x→2

f(x), where f(x) =

{
x+ 2 x ≤ 2
3x− 5 x > 2

.

14. lim
x→3

f(x), where f(x) =

{
x2 − x+ 1 x ≤ 3
2x+ 1 x > 3

.

15. lim
x→0

f(x), where f(x) =

{
cos x x ≤ 0
x2 + 3x+ 1 x > 0

.

16. lim
x→π/2

f(x), where f(x) =

{
sin x x ≤ π/2
cos x x > π/2

.

In Exercises 17–26, a function f and a value a are given. Approx‐

imate the limit of the difference quotient, lim
h→0

f(a+ h)− f(a)
h

,
using h = ±0.1,±0.01.

17. f(x) = −7x+ 2, a = 3

18. f(x) = 9x+ 0.06, a = −1

19. f(x) = x2 + 3x− 7, a = 1

20. f(x) = 1
x+ 1

, a = 2

21. f(x) = −4x2 + 5x− 1, a = −3

22. f(x) = ln x, a = 5

23. f(x) = sin x, a = π

24. f(x) = cos x, a = π

25. f(x) =
√
x+ 4, a = 0

26. f(x) = ex, a = 1
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Chapter 1 Limits

1.2 Epsilon‐Delta Definition of a Limit
This section introduces the formal definition of a limit. Many refer to this as “the
epsilon‐delta,” definition, referring to the letters ε and δ of the Greek alphabet.

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an x‐value, c, we say that “the
limit of the function f, as x approaches c, is a value L”:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if “y is near L” whenever “x is near c.”

The problem with these definitions is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respectively?

The definition we describe in this section comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The traditional notation for the x‐tolerance is the lowercase Greek letter
delta, or δ, and the y‐tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of 3′ nearly gets us to the actual definition:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

We can write “x is within δ units of c” mathematically as

|x− c| < δ, which is equivalent to c− δ < x < c+ δ.

Letting the symbol “−→” represent the word “implies,” we can rewrite 3′′ as

|x− c| < δ −→ |y− L| < ε or c−δ < x < c+δ −→ L−ε < y < L+ε.

The point is that δ and ε, being tolerances, can be any positive (but typically
small) values. Finally, we have the formal definition of the limit with the notation
seen in the previous section.

Notes:
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1.2 Epsilon‐Delta Definition of a Limit

Definition 1.2.1 The Limit of a Function f
Let I be an open interval containing c, and let f be a function defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim
x→c

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x ̸= c, if
|x− c| < δ, then |f(x)− L| < ε.

(Mathematicians often enjoy writing ideas without using any words. Here is
the wordless definition of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > 0, ∃ δ > 0 s.t. 0 < |x− c| < δ −→ |f(x)− L| < ε.)

Note the order in which ε and δ are given. In the definition, the y‐tolerance
ε is given first and then the limit will exist if we can find an x‐tolerance δ that
works.

Watch the video:
Limits 1b — Delta‐Epsilon Formulation at
https://youtu.be/v5zsbgYrunM

Anexamplewill help us understand this definition. Note that the explanation
is long, but it will go through all steps necessary to understand the ideas.

Example 1.2.1 Evaluating a limit using the definition
Show that lim

x→4

√
x = 2.

SOLUTION Beforeweuse the formal definition, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

1.5 < y < 2.5
1.5 <

√
x < 2.5

1.52 < x < 2.52
2.25 < x < 6.25.

Notes:
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Chapter 1 Limits

So, what is the desired x tolerance? Remember, wewant to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ ≤ 1.75. See Figure 1.2.1.

2 4 6

1

2 }
ε=.5

}
ε=.5

Choose ε > 0. Then ...

x

y

2 4 6

1

2 }
ε=.5

}
ε=.5

width
= 1.75︷ ︸︸ ︷ width

= 2.25︷ ︸︸ ︷

... choose δ smaller
than each of these

x

y

With ε = 0.5, we pick any δ < 1.75.

Figure 1.2.1: Illustrating the ε − δ proc‐
ess.

Given the y tolerance ε = 0.5, we have found an x tolerance, δ ≤ 1.75, such
that whenever x is within δ units of 4, then y is within ε units of 2. That’s what
we were trying to find.

Let’s try another value of ε.

What if the y tolerance is 0.01, i.e., ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have δ ≤ 0.0399, which is
the minimum distance from 4 of the two bounds given above.

What we have so far: if ε = 0.5, then δ ≤ 1.75 and if ε = 0.01, then δ ≤
0.0399. A pattern is not easy to see, so we switch to general ε try to determine
δ symbolically. We start by assuming y =

√
x is within ε units of 2:

|y− 2| < ε

−ε < y− 2 < ε (Definition of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2) (Rewrite in the desired form)
−(4ε− ε2) < x− 4 < (4ε+ ε2) (Rewrite in the desired form)

The “desired form” in the last step is “−something < x − 4 < something.”
Sincewewant this last interval to describe an x tolerance around 4, we have that
either δ ≤ 4ε− ε2 or δ ≤ 4ε+ ε2, whichever is smaller:

δ ≤ min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, the minimum is δ ≤ 4ε − ε2. That’s the formula: given an ε, set
δ ≤ 4ε− ε2.

Notes:
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1.2 Epsilon‐Delta Definition of a Limit

We can check this for our previous values. If ε = 0.5, the formula gives
δ ≤ 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ ≤ 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, set δ ≤ 4ε − ε2. Then if |x− 4| < δ (and x ̸= 4), then
|f(x)− 2| < ε, satisfying the definition of the limit. We have shown formally
(and finally!) that lim

x→4

√
x = 2.

The previous example was a little long in that we sampled a few specific
cases of ε before handling the general case. Normally this is not done. The
previous example is also a bit unsatisfying in that

√
4 = 2; why work so hard

to prove something so obvious? Many ε‐δ proofs are long and difficult to do.
In this section, we will focus on examples where the answer is, frankly, obvious,
because the non‐obvious examples are even harder. In the next section we will
learn some theorems that allowus to evaluate limits analytically, that is, without
using the ε‐δ definition.

We will follow a general pattern to work through δ‐ε problems. In some
sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by assuming

1. |f(x)− L| < ε, then perform some algebraic manipulations to give an in‐
equality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our δ. We can refer to this as the “scratch‐work” phase
of our proof. Once we have δ, we can formally start with |x− c| < δ and use
algebraic manipulations to conclude that |f(x)− L| < ε, usually by using the
same steps of our “scratch‐work” in reverse order.

We will highlight this process in the following examples.

Example 1.2.2 Evaluating a limit using the definition
Show that lim

x→1
(3x− 5) = −2

SOLUTION Let’s do this example symbolically from the start.
Scratch‐Work:
We start our scratch‐work by considering |f(x)− (−2)| < ε:

Notes:
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Chapter 1 Limits

|f(x)− (−2)| < ε

|3x− 5+ 2| < ε

|3x− 3| < ε

3 |x− 1| < ε

|x− 1| < ε

3

This suggests that we set δ = ε
3 ,

Proof
Given ε > 0, choose δ =

ε

3
. We assume |x− 1| < δ

|x− 1| < δ

|x− 1| < ε

3
(Our choice of δ)

3 |x− 1| < ε

3
· 3 (Multiply by 3)

|3x− 3| < ε (Simplify)
|3x− 5+ 2| < ε

|3x− 5− (−2)| < ε,

which is what we wanted to show. Thus lim
x→1

(3x− 5) = −2. □

Example 1.2.3 Evaluating a limit using the definition
Show that lim

x→2

(
4− 3

2
x
)

= 1.

SOLUTION Scratch‐Work:
We start our scratch‐work by considering |f(x)− 1| < ε:

|f(x)− 1| < ε∣∣∣∣4− 3
2
x− 1

∣∣∣∣ < ε∣∣∣∣3− 3
2
x
∣∣∣∣ < ε∣∣∣∣−3

2
(−2+ x)

∣∣∣∣ < ε

Notes:
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1.2 Epsilon‐Delta Definition of a Limit

3
2
|x− 2| < ε

|x− 2| < 2ε
3

This suggests that we set δ = 2ε
3 ,

Proof
Given ε > 0, choose δ =

2ε
3
. We assume |x− 2| < δ

|x− 2| < δ

|x− 2| < 2ε
3

3
2
|x− 2| < 2ε

3
· 3
2∣∣∣∣−3

2
(x− 2)

∣∣∣∣ < ε∣∣∣∣−3
2
x+ 3

∣∣∣∣ < ε∣∣∣∣4− 3
2
x− 1

∣∣∣∣ < ε,

which is what we wanted to show. Thus lim
x→2

(4− 3
2
x) = 1. □

Example 1.2.4 Evaluating a limit using the definition
Show that lim

x→2
x2 = 4.

SOLUTION Scratch‐Work: We start our scratch‐work by considering
|f(x)− 4| < ε:

|f(x)− 4| < ε∣∣x2 − 4
∣∣ < ε (Now factor)

|(x− 2)(x+ 2)| < ε

|x− 2| < ε

|x+ 2|
. (1.2.1)

We are at the phase of saying that |x− 2| < something, where something=
ε/ |x+ 2|. Wewant to turn that something into δ. Couldwenot set δ =

ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an

Notes:
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Chapter 1 Limits

assumption. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In particular, we can (probably) assume that
δ < 1. If this is true, then |x− 2| < δ would imply that |x− 2| < 1, giving
1 < x < 3.

Now, back to the fraction
ε

|x+ 2|
. If 1 < x < 3, then 3 < x + 2 < 5 (add 2

to all terms in the inequality). Taking reciprocals, we have

1
5
<

1
|x+ 2|

<
1
3

which implies

1
5
<

1
|x+ 2|

which implies

ε

5
<

ε

|x+ 2|
. (1.2.2)

This suggests that we set δ ≤ ε

5
. This ends our scratch‐work, and we begin

the formal proof (which also helps us understand why this was a good choice of
δ).

Proof
Given ε, let δ ≤ ε/5. Wewant to show that when |x− 2| < δ, then

∣∣x2 − 4
∣∣ < ε.

We start with |x− 2| < δ:

|x− 2| < δ

|x− 2| < ε

5
|x− 2| < ε

5
<

ε

|x+ 2|
(for x near 2, from Equation (1.2.2))

|x− 2| · |x+ 2| < ε

|(x− 2)(x+ 2)| < ε∣∣x2 − 4
∣∣ < ε,

which is what we wanted to show. Thus lim
x→2

x2 = 4. □

We have arrived at
∣∣x2 − 4

∣∣ < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assumption; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get by with
a slightly larger δ, as shown in Figure 1.2.2. The dashed outer lines show the
boundaries defined by our choice of ε. The dotted inner lines show the bound‐
aries defined by setting δ = ε/5. Note how these dotted lines are within the

Notes:
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1.2 Epsilon‐Delta Definition of a Limit

dashed lines. That is perfectly fine; by choosing xwithin the dotted lines we are
guaranteed that f(x) will be within ε of 4.

2

4

}
ε

δ︷ ︸︸ ︷

length of ε

length of
δ = ε/5

x

y

Figure 1.2.2: Choosing δ = ε/5 in Exam‐
ple 1.2.4.

In summary, given ε > 0, set δ ≤ ε/5. Then |x− 2| < δ implies
∣∣x2 − 4

∣∣ < ε

(i.e. |y− 4| < ε) as desired. This shows that lim
x→2

x2 = 4. Figure 1.2.2 gives a
visualization of this; by restricting x to values within δ = ε/5 of 2, we see that
f(x) is within ε of 4.

To better understand the definition of a limit,
experiment with the Geogebra app at
http://ggbm.at/RtY27ybS.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square‐
roots and exponentials. It is very difficult to prove, using the techniques given
above, that lim

x→0
(sin x)/x = 1, as we approximated in the previous section.

There is hope. The next section shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of the following
section are employed.

Notes:
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Exercises 1.2
Terms and Concepts

1. What is wrong with the following “definition” of a limit?
“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x)− K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x‐tolerance
or the y‐tolerance?

3. T/F: εmust always be positive.

4. T/F: δ must always be positive.

Problems

5. Use the graph below of f to find a number δ such that if
0 < |x− 2| < δ, then |f(x)− 1| < 0.5.

1 1.41 2 2.45

0.5

1

1.5

2

x

y

6. Use the graph below of f to find a number δ such that if
0 < |x− 2| < δ, then |f(x)− 1| < 0.3.

1 1.29 2 2.95

0.7

1

1.3

x

y

In Exercises 7–18, prove the given limit using an ε− δ proof.

7. lim
x→4

(2x+ 5) = 13

8. lim
x→5

(3− x) = −2

9. lim
x→5

(4x− 12) = 8

10. lim
x→3

(5− 2x) = −1

11. lim
x→3

(
x2 − 3

)
= 6

12. lim
x→4

(
x2 + x− 5

)
= 15

13. lim
x→1

(
2x2 + 3x+ 1

)
= 6

14. lim
x→2

(
x3 − 1

)
= 7

15. lim
x→2

5 = 5

16. lim
x→0

(
e2x − 1

)
= 0

17. lim
x→1

1
x
= 1

18. lim
x→0

sin x = 0 (Hint: use the fact that |sin x| ≤ |x|, with
equality only when x = 0.)
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1.3 Finding Limits Analytically

1.3 Finding Limits Analytically

In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi‐
mations were correct. Thus far, our method of finding a limit is (1) make a really
good approximation either graphically or numerically, and (2) verify our approx‐
imation is correct using an ε‐δ proof.

Recognizing that ε‐δ proofs are cumbersome, this section gives a series of
theorems which allow us to find limits much more quickly and intuitively.

Suppose that lim
x→2

f(x) = 2 and lim
x→2

g(x) = 3. What is lim
x→2

(f(x) + g(x))?
Intuition tells us that the limit should be 5, as we expect limits to behave in a
niceway. The following theorem states that already established limits do behave
nicely.

Theorem 1.3.1 Basic Limit Properties
Let b, c, L and K be real numbers, let n be a positive integer, and let f and
g be functions with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.

1. Constants: lim
x→c

b = b

2. Identity: lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar Multiples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. Quotients: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

[f(x)]n = Ln

8. Roots: lim
x→c

n
√

f(x) = n
√
L (when n is odd or L ≥ 0)

Notes:
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Chapter 1 Limits

We will now prove the Sum Property using the formal definition of a limit
from the previous section. We know that lim

x→c
f(x) = L and lim

x→c
g(x) = K. We

want to show that lim
x→c

(f(x) + g(x)) = L+ K.

Proof
We must show that given any ε > 0, we can find a δ > 0 such that

if 0 < |x− c| < δ, then |f(x) + g(x)− (L+ K)| < ε.

We know lim
x→c

f(x) = L. So for any ε1 > 0, we can find δ1 > 0 such that if 0 <

|x− c| < δ1, then |f(x)− L| < ε1. Similarly we know lim
x→c

g(x) = K so for any
ε2 > 0, we can find δ2 > 0 such that if 0 < |x− c| < δ2, then |g(x)− K| < ε2.
We will let both ε1 and ε2 be ε

2 . Now, we have a δ1 > 0 and a δ2 > 0 such that:

if 0 < |x− c| < δ1, then |f(x)− L| < ε

2
and

if 0 < |x− c| < δ2, then |g(x)− K| < ε

2

We will choose δ = min(δ1, δ2) > 0. If 0 < |x− c| < δ, then |f(x)− L| < ε
2 and

|g(x)− K| < ε
2 . Add the two inequalities together so that

|f(x)− L|+ |g(x)− K| < ε

2
+

ε

2
= ε.

We will now use the triangle inequality: |A+ B| ≤ |A|+ |B|.

|f(x)− L+ g(x)− K| ≤ |f(x)− L|+ |g(x)− K| < ε

Thus |(f(x) + g(x))− (L+ K)| < ε, which is what we were trying to show. □

The other Basic Limit Properties can be proven in a similar way and are left
for the reader. Our next theorem requires a few more conditions.

Theorem 1.3.2 Limits of Composition
Suppose that

lim
x→c

f(x) = L and lim
x→L

g(x) = g(L) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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1.3 Finding Limits Analytically

Watch the video:
Limit Laws to Evaluate a Limit, Example 1 at
https://youtu.be/v_Nz6UUQ4HQ

We apply the theorem to an example.

Example 1.3.1 Using basic limit properties
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

)
3. lim

x→2
p(x)

SOLUTION

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+ 3 =

5.

2. Using the Scalar Multiple and Sum/Difference rules, we find that
lim
x→2

(
5f(x) + g(x)2

)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar Multiple, Sum/Difference and Con‐
stant Rules. We show quite a few steps, but in general these can be omit‐
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9.

Part 3 of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the function. This holds
true for all polynomials, and also for rational functions (which are quotients of
polynomials), as stated in the following theorem.

Notes:
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Chapter 1 Limits

Theorem 1.3.3 Limits of Polynomial and Rational Functions
Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 1.3.2 Finding a limit of a rational function
Using Theorem 1.3.3, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SOLUTION Using Theorem 1.3.3, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.

It was likely frustrating in Section 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function
in Example 1.3.2.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behavior is particularly “nice” in terms of limits. In the next section, we will give
a formal name to these functions that behave “nicely.”

Theorem 1.3.4 Limits of Basic Functions
Let c be a real number in the domain of the given function and let n be a positive integer.
The following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Notes:
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1.3 Finding Limits Analytically

Many times, wewill combine this theoremwith Theorems 1.3.1 and 1.3.2. If
our expression can be built up from the pieces in those theorems, then we can
quickly evaluate the limit.

Example 1.3.3 Evaluating limits analytically
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→ π

2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SOLUTION

1. This is a straightforward application of Theorem 1.3.4:
lim
x→π

cos x = cos π = −1.

2. We can approach this in at least two ways. First, by directly applying The‐
orems 1.3.1 and 1.3.4, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start:

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 1.3.1 and Theorem 1.3.4 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen‐
tial/logarithmic identity that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use Theorem 1.3.2. Using Theorem 1.3.4, we have lim
x→1

ln x =
ln 1 = 0. Applying the Composition rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

Notes:
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5. We encountered this limit in Section 1.1. Applying our theorems, we at‐
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→“ 0 ”
0

.

This, of course, violates a condition of Theorem 1.3.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are still unable to eval‐
uate this limit with tools we currently have at hand.

The section could have been titled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of functions, we can find limits involving sums,
products, powers, etc., of these functions. We further the development of such
comparative tools with the Squeeze Theorem, a clever and intuitive way to find
the value of some limits.

Before stating this theorem formally, suppose we have functions f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states, as illustrated in Figure 1.3.1.

x

y

g(x)

h(x)

f(x)

c

Figure 1.3.1: The situation of the
squeeze theorem

Theorem 1.3.5 Squeeze Theorem
Let f, g and h be functions on open intervals I and J on either side of c
such that for all x in I and J,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take some work to figure out appropriate functions with which to
“squeeze” the given function of which you are trying to evaluate a limit. How‐
ever, that is generally the only place work is necessary; the theorem makes the
“evaluating the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.

Notes:
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1.3 Finding Limits Analytically

Example 1.3.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SOLUTION We will begin by considering the unit circle. Each point on
the unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Fig‐
ure 1.3.2. Using similar triangles, we can extend the line from the origin through
the point to the point (1, tan θ), as shown. (Here we are assuming that 0 ≤ θ ≤
π/2. Later we will show that we can also consider θ ≤ 0.) θ

(1, tan θ)

(cos θ, sin θ)

(1, 0)

Figure 1.3.2: The unit circle and related
triangles.

Figure 1.3.2 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

θ

tan θ

1
θ

1
θ

sin θ

1

tan θ
2

≥ θ

2
≥ sin θ

2

Multiply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequalities, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequalities hold for all values of θ near 0, even negative values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.
lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Notes:
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Two notes about the previous example are worth mentioning. First, one
might be discouraged by this application, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ratio of x and sin x
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functions y = x and y = sin x are
essentially indistinguishable.

We include this special limit, along with three others, in the following theo‐
rem.

Theorem 1.3.6 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap‐
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulting in a limit of 1.

Our final theorem for this sectionwill bemotivated by the following example.

Example 1.3.5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

SOLUTION Wewould like to apply Theorems 1.3.1 and 1.3.3 and substi‐

Notes:
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tute 1 for x in the quotient. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0 ”
0

,

an indeterminate form. We cannot apply the Theorem 1.3.1 because the de‐
nominator is 0.

1 2

1

2

3

x

y

Figure 1.3.3: Graphing f in Example 1.3.5
to understand a limit.

By graphing the function, as in Figure 1.3.3, we see that the function seems
to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quotient can be factored:

Let f(x) =
x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

The function is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

(x + 1) = 2. Recall that when considering limits, we are not con‐
cerned with the value of the function at 1, only the value that the function ap‐
proaches as x approaches 1. Since (x2 − 1)/(x − 1) and x + 1 are the same at
all points except x = 1, they both approach the same value as x approaches 1.
Therefore we can conclude that

lim
x→1

x2 − 1
x− 1

= lim
x→1

(x− 1)(x+ 1)
x− 1

= lim
x→1

(x+ 1) = 2.

The key to the above example is that the functions y = (x2− 1)/(x− 1) and
y = x+1 are identical except at x = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Theorem 1.3.7 Limits of Functions Equal At All But One Point
Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = lim
x→c

g(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra‐

tional function of the form g(x)/f(x) and directly evaluating the limit lim
x→c

g(x)
f(x)

Notes:
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returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, divide, then apply Theorem 1.3.7. Some use‐
ful algebraic techniques to rewrite functions that return an indeterminate form
when evaluating a limit are:

• factoring and dividing out common factors,

• rationalizing the numerator or denominator,

• simplifying the expression, and

• finding a common denominator.

We will demonstrate some of these techniques in the following examples.

Example 1.3.6 Evaluating a limit using Theorem 1.3.7

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

SOLUTION We begin by attempting to apply Theorems 1.3.1 and 1.3.4
and substituting 3 for x. This returns the familiar indeterminate form of “0/0”.
Since the numerator and denominator are each polynomials, we know that (x−
3) is factor of each. Using whatever method is most comfortable to you, factor
out (x− 3) from each (using polynomial division, synthetic division, a computer
algebra system, etc.). We find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can divide the (x − 3) terms as long as x ̸= 3. Using Theorem 1.3.7 we
conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

Example 1.3.7 Evaluating a limit by rationalizing

Evaluate lim
x→0

√
x+ 4− 2

x
.

SOLUTION Webegin by applying Theorem 1.3.4 and substituting 2 for x.
This returns the familiar indeterminate form of “0/0”. We see the radical in the

Notes:
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numerator so we will rationalize the numerator. Using Theorem 1.3.7 we find
that

lim
x→0

√
x+ 4− 2

x
= lim

x→0

√
x+ 4− 2

x
·
√
x+ 4+ 2√
x+ 4+ 2

= lim
x→0

(x+ 4)− 4
x(
√
x+ 4+ 2)

= lim
x→0

x
x(
√
x+ 4+ 2)

Simplify the numerator.

= lim
x→0

1√
x+ 4+ 2

Divide out x.

=
1√
4+ 2

=
1
4
.

Notice that we didn’t distribute the denominator in the second line. Gen‐
erally speaking, when we are hoping to divide out a factor in a fraction we will
need to undo any distributing that we may have prematurely done.

We end this section by revisiting a limit first seen in Section 1.1, a limit of
a difference quotient. Let f(x) = −1.5x2 + 11.5x; we approximated the lim‐

it lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following
example.

Example 1.3.8 Evaluating the limit of a difference quotient
Let f(x) = −1.5x2 + 11.5x; find lim

h→0

f(1+ h)− f(1)
h

.

SOLUTION Since f is a polynomial, our first attempt should be to em‐
ploy Theorem 1.3.4 and substitute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a rational function hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

Notes:

35



Chapter 1 Limits

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 1.3.7, as h ̸= 0)

= 8.5 (using Theorem 1.3.3)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.4; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 1.6 we give a
name to this nice behavior; we label such functions as continuous. Defining that
term will require us to look again at what a limit is and what causes limits to not
exist.

Notes:
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Exercises 1.3
Terms and Concepts
1. Explain in your own words, without using ε‐δ formality,

why lim
x→c

b = b.

2. Explain in your own words, without using ε‐δ formality,
why lim

x→c
x = c.

3. What does the text mean when it says that certain func‐
tions’ “behavior is ‘nice’ in terms of limits”? What, in par‐
ticular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The‐
orem.

5. You are given the following information:
(a) lim

x→1
f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relative sizes of f(x) and g(x)
as x approaches 1?

6. T/F: lim
x→1

ln x = 0. Use a theorem to defend your answer.

Problems
Use the following limits to evaluate the limits given in Exercises
7–14, where possible. If it is not possible, state so.

lim
x→9

f(x) = f(9) = 6 lim
x→6

f(x) = f(6) = 9
lim
x→9

g(x) = g(9) = 3 lim
x→6

g(x) = g(6) = 3

7. lim
x→9

(f(x) + g(x))

8. lim
x→9

(3f(x)/g(x))

9. lim
x→9

(
f(x)− 2g(x)

g(x)

)
10. lim

x→6

(
f(x)

3− g(x)

)
11. lim

x→9
g
(
f(x)

)
12. lim

x→6
f
(
g(x)

)
13. lim

x→6
g
(
f(f(x))

)
14. lim

x→6

(
f(x)g(x)− f 2(x) + g2(x)

)
Use the following limits to evaluate the limits given in Exercises
15–18, where possible. If it is not possible, state so.

lim
x→1

f(x) = f(1) = 2 lim
x→10

f(x) = f(10) = 1
lim
x→1

g(x) = g(1) = 0 lim
x→10

g(x) = g(10) = π

15. lim
x→1

f(x)g(x)

16. lim
x→10

cos
(
g(x)

)
17. lim

x→1
f(x)g(x)

18. lim
x→1

g
(
5f(x)

)

In Exercises 19–40, evaluate the given limit.

19. lim
x→3

(
x2 − 3x+ 7

)
20. lim

x→π

(
x− 3
x− 5

)7

21. lim
x→π/4

cos x sin x

22. lim
x→1

2x− 2
x+ 4

23. lim
x→0

ln x

24. lim
x→3

4x
3−8x

25. lim
x→π/6

csc x

26. lim
x→0

ln(1+ x)

27. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

28. lim
x→π

3x+ 1
1− x

29. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

30. lim
x→0

x2 + 2x
x2 − 2x

31. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

32. lim
x→2

x2 − 10x+ 16
x2 − x− 2

33. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

34. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

35. lim
t→9

√
t− 3
t− 9

36. lim
x→0

√
x2 + 4− 2

x2

37. lim
t→3

1
t −

1
3

t− 3

38. lim
x→0

1
x
− 1

x2 + x

39. lim
t→0

(t− 4)2 − 16
t

40. lim
x→13

√
x+ 3− 4
x− 13

Use the Squeeze Theorem in Exercises 41–46, where appropri‐
ate, to evaluate the given limit.
Hint: −1 ≤ sin x ≤ 1 and−1 ≤ cos x ≤ 1.

41. lim
x→0

x sin
(
1
x

)
42. lim

x→0
sin x cos

(
1
x2

)
43. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

44. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.
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45. lim
x→0

x2 cos
(
1
x

)
46. lim

x→0
x
⌊
1
x

⌋
, where ⌊y⌋ is the greatest integer less than or

equal to y.
Exercises 47–52 challenge your understanding of limits that
can be evaluated using the knowledge gained in this section.

47. lim
x→0

sin 3x
x

48. lim
x→0

sin 5x
8x

49. lim
x→0

ln(1+ x)
x

50. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

51. lim
x→0

tan 4x
tan 3x

52. lim
x→0

tan 5x
sin 7x

53. Let f(x) = 0 and g(x) = x
x
.

(a) Show why lim
x→2

f(x) = 0.

(b) Show why lim
x→0

g(x) = 1.

(c) Show why lim
x→2

g
(
f(x)

)
does not exist.

(d) Showwhy the answer to part (c) does not violate The‐
orem 1.3.2.

54. Verify lim
x→0

cos x− 1
x

= 0 Hint: Multiply by cos x+ 1
cos x+ 1

55. Suppose ax2 + bx + c = 0, so that the quadratic formula
tells us the roots are given by x =

−b±
√

b2−4ac
2a . Find the

limiting values of the roots
(a) when b → 0
(b) when c → 0
(c) when a → 0
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1.4 One Sided Limits

1.4 One Sided Limits
In Section 1.1 we explored the three ways in which limits of functions failed to
exist:

1. The function approached different values from the left and right,

2. The function grows without bound, and

3. The function oscillates.

In this section we explore in depth the concepts behind #1 by introducing
the one‐sided limit. We begin with formal definitions that are very similar to the
definition of the limit given in Section 1.2, but the notation is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.” We will consider #2 in
more detail in Section 1.5.

Definition 1.4.1 One Sided Limits
Left‐Hand Limit
Let I be an open interval with right endpoint c, and let f be a function
defined on I. The limit of f(x), as x approaches c from the left, is L, or,
the left‐hand limit of f at c is L, denoted by

lim
x→c−

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x < c, if
|x− c| < δ, then |f(x)− L| < ε.

Right‐Hand Limit
Let I be an open interval with left endpoint c, and let f be a function
defined on I. The limit of f(x), as x approaches c from the right, is L, or,
the right‐hand limit of f at c is L, denoted by

lim
x→c+

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x > c, if
|x− c| < δ, then |f(x)− L| < ε.

Practically speaking, when evaluating a left‐hand limit, we consider only val‐
ues of x “to the left of c,” i.e., where x < c. The admittedly imperfect notation
x → c− is used to imply that we look at values of x to the left of c. The notation

Notes:
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Chapter 1 Limits

has nothing to dowith positive or negative values of either x or c. A similar state‐
ment holds for evaluating right‐hand limits; there we consider only values of x
to the right of c, i.e., x > c. We can use the theorems from previous sections to
help us evaluate these limits; we just restrict our view to one side of c.

Watch the video:
One‐sided limits from graphs at
https://youtu.be/nOnd3SiYZqM

We practice evaluating left and right‐hand limits through several examples.

Example 1.4.1 Evaluating one sided limits

Let f(x) =

{
2x 0 ≤ x ≤ 1
6− 2x 1 < x < 2

, as shown in Figure 1.4.1. Find each of the

following:

1 2

2

4

x

y

Figure 1.4.1: A graph of f in Exam‐
ple 1.4.1.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SOLUTION For these problems, the visual aid of the graph is likely more
effective in evaluating the limits than using f itself. Therefore we will refer often
to the graph.

1. As x goes to 1 from the left, we see that f(x) is approaching the value of 2.
Therefore lim

x→1−
f(x) = 2.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 4.
Recall that it does not matter that there is an “open circle” there; we are
evaluating a limit, not the value of the function. Therefore lim

x→1+
f(x) = 4.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
section. The function does not approach one particular value, but two
different values from the left and the right.

Notes:
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4. Using the definition and by looking at the graph we see that f(1) = 2.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There‐
fore lim

x→0+
f(x) = 0. Note we cannot consider a left‐hand limit at 0 as f is

not defined for values of x < 0.

6. Using the definition and the graph, f(0) = 0.

7. As x goes to 2 from the left, we see that f(x) is approaching the value of 2.
Therefore lim

x→2−
f(x) = 2.

8. The graph and the definition of the function show that f(2) is not defined.

Note how the left and right‐hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left and right‐hand limits are equal.

Theorem 1.4.1 Limits and One Sided Limits
Let f be a function defined on an open interval I containing c, except
possibly at c. Then lim

x→c
f(x) = L

if, and only if,
lim

x→c−
f(x) = L and lim

x→c+
f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right‐hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.1 – 1.4.4 is that the value of the func‐
tionmay or may not be equal to the value(s) of its left‐ or right‐hand limits, even
when these limits agree.

Example 1.4.2 Evaluating limits of a piecewise‐defined function

Let f(x) =

{
2− x 0 < x < 1
(x− 2)2 1 < x < 2

, as shown in Figure 1.4.2. Evaluate the fol‐

lowing.

Notes:
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1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

1 2

1

2

x

y

Figure 1.4.2: A graph of f from Exam‐
ple 1.4.2

SOLUTION Againwewill evaluate each using both the definition of f and
its graph.

1. As x approaches 1 from the left, we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and left. Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the left, f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

Example 1.4.3 Evaluating limits of a piecewise‐defined function

Suppose f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1
1 x = 1

, as shown in Figure 1.4.3. Evalu‐

ate the following.

1 2

0.5

1

x

y

Figure 1.4.3: Graphing f in Example 1.4.3

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SOLUTION It is clear by looking at the graph that both the left and right‐
hand limits of f, as x approaches 1, is 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Notes:
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1.4 One Sided Limits

Example 1.4.4 Evaluating limits of a piecewise‐defined function

Let f(x) =

{
x2 0 ≤ x ≤ 1
2− x 1 < x ≤ 2

. Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SOLUTION In this example, we will evaluate the limit by only consider‐
ing the definition of f.

1. As x approaches 1 from the left, f(x) is defined to be x2. Therefore

lim
x→1−

f(x) = lim
x→1−

x2 = 1.

2. As x approaches 1 from the right, f(x) is defined to be 2− x. Therefore

lim
x→1+

f(x) = lim
x→1+

(2− x) = 1.

3. Since the right and left hand limits are equal at x = 1, i.e., lim
x→1−

f(x) =

lim
x→1+

f(x) = 1, this tells us lim
x→1

f(x) = 1.

4. To find f(1), we use the x2 piece of our function, so f(1) = 1.

Example 1.4.5 Evaluating limits of an absolute value function
Let f(x) =

|x− 1|
x− 1

. Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SOLUTION We begin by rewriting |x− 1| as a piecewise function.

|x− 1| =

{
x− 1 x ≥ 1
−(x− 1) x ≤ 1

1. lim
x→1−

f(x) = lim
x→1−

−(x− 1)
x− 1

= lim
x→1−

−1 = −1

2. lim
x→1+

f(x) = lim
x→1+

x− 1
x− 1

= lim
x→1+

1 = 1

Notes:
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3. lim
x→1

f(x) does not exist because the left and right hand limits are not equal.

4. f(1) is undefined.

In Examples 1.4.1 – 1.4.5 we were asked to find both lim
x→1

f(x) and f(1). Con‐
sider the following table:

lim
x→1

f(x) f(1)

Example 1.4.1 does not exist 2
Example 1.4.2 1 not defined
Example 1.4.3 0 1
Example 1.4.4 1 1
Example 1.4.5 does not exist not defined

Only in Example 1.4.4 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in Section 1.6, entitled “Continuity.” In short, a continuous
function is one in which when a function approaches a value as x → c (i.e., when
lim
x→c

f(x) = L), it actually attains that value at c. Such functions behave nicely as
they are very predictable.

In the next section we examine onemore aspect of limits: limits that involve
infinity.

Notes:
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Exercises 1.4
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5–10, evaluate each expression using the given
graph of f(x).

5.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)

6.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

7.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

8.
−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

9.
−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)
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10.
−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 11–14, evaluate the given limit.

11. lim
x→7−

√
x2 − 49.

12. lim
x→5+

√
x2 − 25.

13. lim
x→−10−

√
100− x2.

14. lim
x→−8+

√
x2 − 64.

In Exercises 15–24, evaluate the given limits of the piecewise
defined functions f.

15. f(x) =

{
x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

16. f(x) =

{
2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

17. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

18. f(x) =

{
cos x x < π

sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

19. f(x) =

{
1− cos2 x x < a
sin2 x x ≥ a

,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

20. f(x) =


x+ 1 x < 1
1 x = 1
x− 1 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

21. f(x) =


x2 x < 2
x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

22. f(x) =

{
a(x− b)2 + c x < b
a(x− b) + c x ≥ b

, where a, b and c are real

numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

23. f(x) =

{
|x|
x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

24. f(x) = |4− x|
x− 4

(a) lim
x→4−

f(x)

(b) lim
x→4+

f(x)

(c) lim
x→4

f(x)

(d) f(4)

In Exercises 25–28, sketch the graph of a function f that satis‐
fies all of the given conditions.

25. lim
x→1−

f(x) = 2, lim
x→1+

f(x) = −3, f(1) = 0.
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26. lim
x→−1

f(x) = 3, lim
x→3−

f(x) = 1, lim
x→3+

f(x) = −2,

f(−1) = 1, f(3) = −2.
27. lim

x→−2−
f(x) = 1, lim

x→−2+
f(x) = 0, lim

x→0−
f(x) = 3,

lim
x→0+

f(x) = −1, f(−2) = 4, f(0) = −3.

28. lim
x→0−

f(x) = 0, lim
x→0+

f(x) = 2, lim
x→4−

f(x) = −2,

lim
x→4+

f(x) = 1, f(0) = 2, f(4) = −2.

Review
29. Evaluate the limit: lim

x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

30. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

31. Evaluate the limit: lim
h→0

√
3+ h−

√
3

h
.

32. Approximate the limit numerically: lim
h→0

(2+ h)2 − 4
h

.

33. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Chapter 1 Limits

1.5 Limits Involving Infinity
In Definition 1.2.1 we stated that in the equation lim

x→c
f(x) = L, both c and Lwere

numbers. In this section we relax that definition a bit by considering situations
when it makes sense to let c and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x2, as shown in Figure 1.5.1.
Note how, as x approaches 0, f(x) grows very, very large. It seems appropriate,
and descriptive, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notation such as

lim
x→∞

1
x2

= 0.

−1 −0.5 0.5 1

50

100

x

y

Figure 1.5.1: Graphing f(x) = 1/x2 for
values of x near 0.

We explore both types of use of∞ in turn.

Definition 1.5.1 Limit of Infinity,∞
We say lim

x→c
f(x) = ∞ if for everyM > 0 there exists δ > 0 such that for

all x ̸= c, if |x− c| < δ, then f(x) ≥ M.

This is just like the ε‐δ definition from Section 1.2. In that definition, given
any (small) value ε, if we let x get close enough to c (within δ units of c) then f(x)
is guaranteed to be within ε of f(c). Here, given any (large) value M, if we let x
get close enough to c (within δ units of c), then f(x) will be at least as large as
M. In other words, if we get close enough to c, then we can make f(x) as large
as we want. We can define limits equal to−∞ in a similar way.

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly stat‐
ing that the limit of f(x), as x approaches c, does not exist. A limit only exists
when f(x) approaches an actual numeric value. We use the concept of limits
that approach infinity because it is helpful and descriptive.

Watch the video:
Calculus — Infinite Limits at
https://youtu.be/-vwcLvb9A0s

Notes:
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1.5 Limits Involving Infinity

Example 1.5.1 Evaluating limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.5.2.

0.5 1 1.5 2

50

100

x

y

Figure 1.5.2: Observing infinite limit as
x → 1 in Example 1.5.1.

SOLUTION In Example 1.1.4 of Section 1.1, by inspecting values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the function
does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general,
let a “large” value M be given. Let δ = 1/

√
M. If x is within δ of 1, i.e., if

|x− 1| < 1/
√
M, then:

|x− 1| < 1√
M

(x− 1)2 <
1
M

1
(x− 1)2

> M,

which is what we wanted to show. So we may say lim
x→1

1/(x− 1)2 = ∞.

Example 1.5.2 Evaluating limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.5.3.

−1 −0.5 0.5 1

−50

50
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y

Figure 1.5.3: Evaluating lim
x→0

1
x
.

SOLUTION It is easy to see that the function grows without bound near
0, but it does so in different ways on different sides of 0. Since its behavior is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one‐sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.

Vertical asymptotes

Definition 1.5.2 Vertical Asymptote
The function f(x) has a vertical asymptote at x = c if any one of the
following is true:

lim
x→c−

f(x) = ±∞, lim
x→c+

f(x) = ±∞, or lim
x→c

f(x) = ±∞

Notes:
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Chapter 1 Limits

Example 1.5.3 Finding vertical asymptotes
Find the vertical asymptotes of f(x) =

3x
x2 − 4

.

SOLUTION Vertical asymptotes occurwhere the function growswithout
bound; this can occur at values of cwhere the denominator is 0. When x is near
c, the denominator is small, which in turn can make the function take on large
values. In the case of the given function, the denominator is 0 at x = ±2. We
will consider the limits as x approaches±2 from the left and right to determine
the vertical asymptotes.

−5 5

−10

10

x

y

Figure 1.5.4: Graphing f(x) = 3x
x2 − 4

.

lim
x→2+

3x
(x− 2)(x+ 2)

= ∞

lim
x→2−

3x
(x− 2)(x+ 2)

= −∞

lim
x→−2+

3x
(x− 2)(x+ 2)

= ∞

lim
x→−2−

3x
(x− 2)(x+ 2)

= −∞

We can graphically confirm the limits above by looking at Figure 1.5.4. Thus the
vertical asymptotes are at x = ±2.

When a rational function has a vertical asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a vertical asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a vertical asymptote at x = 1,
as shown in Figure 1.5.5.

−1 1 2

1

2

3

x

y

Figure 1.5.5: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp‐
tote at x = 1.

While the denominator does get small near x = 1, the numerator gets small
too, matching the denominator step for step. In fact, factoring the numerator,
we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Dividing out common term, we get that f(x) = x+1 for x ̸= 1. So there is clearly
no asymptote, rather a hole exists in the graph at x = 1.

The above example may seem a little contrived. Another example demon‐
strating this important concept is f(x) = (sin x)/x. We have considered this

function several times in the previous sections. We found that lim
x→0

sin x
x

= 1;
i.e., there is no vertical asymptote. No simple algebraic manipulationmakes this
fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

Notes:
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1.5 Limits Involving Infinity

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respectively. However, 0/0 is not a valid arithmetical expression. It gives
no indication that the respective limits are 1 and 2.

With a little cleverness, one can come up with 0/0 expressions which have
a limit of ∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0. The
respective rates at which they do this are very important and determine the ac‐
tual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and dividing)
or it may require a tool such as the Squeeze Theorem. In a later section we will
learn a technique called L’Hôpital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluating a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quantity
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be∞,−∞, or simply not exist if the
left‐ and right‐hand limits do not match.

Notes:
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Chapter 1 Limits

Limits at Infinity and Horizontal Asymptotes
At the beginning of this section we briefly considered what happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the function to
the “far right” of the graph. We make this notion more explicit in the following
definition.

Definition 1.5.3 Limits at Infinity

1. We say lim
x→∞

f(x) = L if for every ε > 0 there exists M > 0 such
that if x ≥ M, then |f(x)− L| < ε.

2. We say lim
x→−∞

f(x) = L if for every ε > 0 there existsM < 0 such
that if x ≤ M, then |f(x)− L| < ε.

Definition 1.5.4 Horizontal Asymptote
The function f(x) has a horizontal asymptote at y = L if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definition
with Definition 1.5.1.

−20 −10 10 20

0.5

1

x

y

(a)
x f(x)

10 0.9615
100 0.9996

10000 0.999996
−10 0.9615

−100 0.9996
−10000 0.999996

(b)

Figure 1.5.6: Using a graph and a table
to approximate a horizontal asymptote
in Example 1.5.4.

Example 1.5.4 Approximating horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SOLUTION We will approximate the horizontal asymptotes by approxi‐
mating the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.5.6(a) shows a sketch of f, and part (b) gives values of f(x) for largemag‐
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analytically.

Notes:
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1.5 Limits Involving Infinity

Horizontal asymptotes can take on a variety of forms. Figure 1.5.7(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap‐
proached from both above and below.

Figure 1.5.7(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.

Figure 1.5.7(c) shows that f(x) = (sin x)/x has even more interesting behav‐
ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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(a) (b) (c)

Figure 1.5.7: Considering different types of horizontal asymptotes.
Note: With our definitions, we can
also now say that Theorems 1.3.1,
1.3.2, and 1.3.5 also hold when c =
−∞ and c = ∞.

We can analytically evaluate limits at infinity for rational functions once we
understand lim

x→∞
1/x. As x gets larger and larger, the 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as wewant by choosing a large
enough value of x. Given ε, we canmake 1/x < ε by choosing x > 1/ε. Thus we
have limx→∞ 1/x = 0. It is now not much of a jump to conclude the following:

Theorem 1.5.1 Limits of 1
xn

For any n > 0,

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0 (provided xn is defined for x < 0)

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

Notes:
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Chapter 1 Limits

A good way of approaching this is to divide through the numerator and denom‐
inator by x3 (hence dividing by 1), which is the largest power of x to appear in
the function. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3

=
1+ 0+ 0
4− 0+ 0

=
1
4
.

We used the rules for limits (which also hold for limits at infinity), as well as the
fact about limits of 1/xn. This procedure works for any rational function and is
highlighted in the following Key Idea.

Key Idea 1.5.1 Finding Limits of Rational Functions at Infinity
Let f(x) be a rational function of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.
To determine lim

x→∞
f(x) or lim

x→−∞
f(x):

1. Divide the numerator and denominator by xm.

2. Simplify as much as possible.

3. Use Theorem 1.5.1 to find the limit.

If the highest power of x is the same in both the numerator and denominator
(i.e. n = m), we will be in a situation like the example above, where we will
divide by xn and in the limit all the terms will approach 0 except for anxn/xn and
bmxm/xn. Since n = m, this will leave us with the limit an/bm. If n < m, then
after dividing through by xm, all the terms in the numerator will approach 0 in
the limit, leaving us with 0/bm or 0. If n > m, and we try dividing through by xn,
we end up with all the terms in the denominator tending toward 0, while the xn
term in the numerator does not approach 0. This is indicative of some sort of
infinite limit.

Notes:
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1.5 Limits Involving Infinity

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the function behaves
like an/(bmxm−n), which tends toward 0. If n > m, the function behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

This procedure works for any rational function. In fact, it gives us the follow‐
ing key idea.

Key Idea 1.5.2 Limits of Rational Functions at Infinity
Let f(x) be a rational function of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

Example 1.5.5 Horizontal Asymptotes Involving Square Roots
Find the horizontal asymptotes of

x√
x2 + 1

.

SOLUTION We must consider the limits as x → ±∞. When x is very
large, x2 + 1 ≈ x2 and thus

√
x2 + 1 ≈

√
x2 = |x|.

lim
x→∞

x√
x2 + 1

= lim
x→∞

x/x√
x2/x2 + 1/x2

= lim
x→∞

1√
1+ 1/x2

= 1

Notes:
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Chapter 1 Limits

Therefore, y = 1 is a horizontal asymptote. Similarly,

lim
x→−∞

x√
x2 + 1

= lim
x→−∞

x/(−x)√
x2/x2 + 1/x2

= lim
x→−∞

−1√
1+ 1/x2

= −1

Therefore, y = −1 is also a horizontal asymptote.

Example 1.5.6 Finding a limit of a rational function

Confirm analytically that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 1.5.4.

SOLUTION Before using Key Idea 1.5.2, let’s use the technique of evalu‐
ating limits at infinity of rational functions that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Key Idea 1.5.2 directly; in this case n = m so the limit is the
ratio of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 1.5.7 Finding limits of rational functions
(a) Analytically evaluate the following limits, and (b) Use Key Idea 1.5.2 to eval‐
uate each limit.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

Notes:

56



1.5 Limits Involving Infinity

SOLUTION
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Figure 1.5.8: Visualizing the functions in
Example 1.5.7.

1. (a) Divide numerator and denominator by x3.

lim
x→−∞

x2 + 2x− 1
x3 + 1

= lim
x→−∞

x2/x3 + 2x/x3 − 1/x3

x3/x3 + 1/x3

= lim
x→−∞

1/x+ 2/x2 − 1/x3

1+ 1/x3

=
0+ 0+ 0
1+ 0

= 0

(b) The highest power of x is in the denominator. Therefore, the limit is
0; see Figure 1.5.8(a).

2. (a) Divide numerator and denominator by x2.

lim
x→∞

x2 + 2x− 1
1− x− 3x2

= lim
x→∞

x2/x2 + 2x/x2 − 1/x2

1/x2 − x/x2 − 3x2/x2

= lim
x→∞

1+ 2/x− 1/x2

1/x2 − 1/x− 3

=
1+ 0− 0
0− 0− 3

= −1
3

(b) The highest power of x is x2, which occurs in both the numerator and
denominator. The limit is therefore the ratio of the coefficients of x2,
which is−1/3. See Figure 1.5.8(b).

3. (a) Divide numerator and denominator by x.

lim
x→∞

x2 − 1
3− x

= lim
x→∞

x2/x− 1/x
3/x− x/x

= lim
x→∞

x− 1/x
3/x− 1

= −∞

(b) The highest power of x is in the numerator so the limit will be∞ or
−∞. To see which, consider only the dominant terms from the nu‐
merator and denominator, which are x2 and −x. The expression in
the limit will behave like x2/(−x) = −x for large values of x. There‐
fore, the limit is−∞. See Figure 1.5.8(c).

Notes:
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Exercises 1.5
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly stating that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly stating that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a vertical asymptote at
x = 5.

5. T/F:∞/0 is an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a functionwith a vertical asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is or is not
continuous at x = 7.

Problems

In Exercises 9–14, evaluate the given limits using the graph of
the function.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

−2 −1

50

100

x

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

2 4 6

−50

50

x

y

11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

−10 −5 5 10

−1

−0.5

0.5

1

x

y

12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

−10 −5 5 10

−100

−50

50

100

x

y

13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

−1

−0.5

0.5

1

−4π−3π−2π−π π 2π 3π 4π
x

y

14. f(x) = 2x + 10
(a) lim

x→−∞
f(x)

(b) lim
x→∞

f(x)

−10 −5 5

50

100

150

x

y

In Exercises 15–18, numerically approximate the following lim‐
its:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18
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18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19–26, identify the horizontal and vertical asymp‐
totes, if any, of the given function.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

25. f(x) = 2x4 + 3√
x8 + 9

26. f(x) = 3x3 + 4√
x6 + 3

In Exercises 27–34, evaluate the given limit.

27. lim
x→∞

x3 + 2x2 + 1
x− 5

28. lim
x→∞

x3 + 2x2 + 1
5− x

29. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

30. lim
x→−∞

x3 + 2x2 + 1
5− x2

31. lim
x→−∞

√
4x2 − 3x+ 6
3x− 1

32. lim
x→−∞

√
9x6 + 4x2 + 25
3x3 + 4x+ 5

33. lim
x→−∞

√
10x10 − 4x4 + 9
2x5 + 2x2 + 3

34. lim
x→−∞

√
25x4 + 16x2 + 9
10x2 + 6x+ 12

Review

35. Use an ε− δ proof to show that
lim
x→1

5x− 2 = 3.

36. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the follow‐
ing limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(a) lim
x→2

(f/g)(x)

(b) lim
x→2

f(x)g(x)

37. Evaluate the limit: lim
x→e

ln x.
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Chapter 1 Limits

1.6 Continuity

As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi‐
cator of what f(1) actually is. This can be problematic; functions can tend to one
value but attain another. This section focuses on functions that do not exhibit
such behavior.

Definition 1.6.1 Continuous Function
Let f be a function defined on an open interval I containing c.

1. f is continuous at c if lim
x→c

f(x) = f(c).

2. f is continuous on I if f is continuous at c for all values of c in I. If f
is continuous on (−∞,∞), we say f is continuous everywhere.

A useful way to establish whether or not a function f is continuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

If f is defined near c but is not continuous at c, then we say that f is dis‐
continuous at c or f has a discontinuity at c. We will discuss three types of
discontinuities, as seen in Figure 1.6.1.

−2 2
−2
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y

−2 2
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y

−2 2
−2

2

x

y

Removable Infinite Jump

Figure 1.6.1: Three types of discontinuities

Notes:
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1.6 Continuity

Removable discontinuity This type of discontinuity is called removable because
we could remove the discontinuity by redefining the function at a single
point.

Infinite discontinuity The function is approaching±∞ at some x value.

Jump discontinuity The function “jumps” from one value to another.

Watch the video:
Continuity and Limits Made Easy — Part 1 of 2 at
https://youtu.be/hlorAjS0xWE

Example 1.6.1 Finding intervals of continuity
Let f be defined as shown in Figure 1.6.2. Give the interval(s) on which f is con‐
tinuous.

1 2 3

0.5

1

1.5

x

y

Figure 1.6.2: A graph of f in Exam‐
ple 1.6.1.

SOLUTION We proceed by examining the three criteria for continuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be continuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is continuous at every point of (0, 3) except at x = 1.
Therefore f is continuous on (0, 1) ∪ (1, 3).

−2 2

−2

2

x

y

Figure 1.6.3: A graph of the step func‐
tion in Example 1.6.2.

Example 1.6.2 Finding intervals of continuity
The floor function, f(x) = ⌊x⌋, returns the largest integer smaller than or equal
to the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.6.3
demonstrates why this is often called a “step function.”
Give the intervals on which f is continuous.

SOLUTION We examine the three criteria for continuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the

Notes:
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Chapter 1 Limits

next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The function is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is continuous everywhere except at integer values of c. So
the intervals on which f is continuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our definition of continuity on an interval specifies the interval is an open
interval. At endpoints or points of discontinuitywemay consider continuity from
the right or left.

Definition 1.6.2 Right and Left Continuity
Right Continuous
Let f be defined on a closed interval with left endpoint a. We say that f
is continuous from the right at a (or right continuous at a) if

lim
x→a+

f(x) = f(a).

Left Continuous
Let f be defined on a closed interval with right endpoint b. We say that
f is continuous from the left at b (or left continuous at b) if

lim
x→b−

f(x) = f(b).

We can then extend the definition of continuity to closed intervals by con‐
sidering the appropriate one‐sided limits at the endpoints.

Definition 1.6.3 Continuity on Closed Intervals
Let f be defined on the closed interval [a, b] for some real numbers a, b.
Then f is continuous on [a, b] if:

1. f is continuous on (a, b),

2. f is right continuous at a and

3. f is left continuous at b.

Notes:
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1.6 Continuity

We can make the appropriate adjustments to talk about continuity on half‐
open intervals such as [a, b) or (a, b] if necessary.

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 1.3.1 and 1.3.3 apply to continuity as well.
We will utilize these properties in the following example.

Example 1.6.3 Determining intervals on which a function is continuous
For each of the following functions, give the domain of the function and the
interval(s) on which it is continuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

SOLUTION We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0) ∪ (0,∞). As it is a rational func‐
tion, we apply Theorem 1.3.3 to recognize that f is continuous on all of its
domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 1.3.4 shows that sin x is continuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 1.3.4 shows that

f(x) =
√
x is continuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1.3.1 and

1.3.4 shows that f is continuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

function as f(x) =

{
−x x < 0
x x ≥ 0

. Each “piece” of this piecewise defined

function is continuous on all of its domain, giving that f is continuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is continuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transitions from one “piece” of its definition to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is continuous everywhere.

The following theorem states how continuous functions can be combined to
form other continuous functions.

Notes:
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Chapter 1 Limits

Theorem 1.6.1 Properties of Continuous Functions
Let f and g be continuous functions on an interval I, let c be a real number
and let n be a positive integer. The following functions are continuous
on I.

1. Sums/Differences: f± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if f ≥ 0 on I or n is odd)

The proofs of each of the parts of Theorem 1.6.1 follow from the Basic Limit
Properties given in Theorem 1.3.1. We will prove the product of two continuous
functions is continuous now.

Proof
We know that f and g are continuous at c so by definition we have

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c).

Therefore,
lim
x→c

(f · g)(x) = lim
x→c

f(x) · g(x)

= lim
x→c

f(x) · lim
x→c

g(x)

= f(c) · g(c)
= (f · g)(c). □

Theorem 1.6.2 Continuity of Compositions
Let f be continuous on I, where the range of f on I is J, and let g be con‐
tinuous on J. Then

(g ◦ f)(x) = g(f(x))

is continuous on I.

Now knowing the definition of continuity we can re‐read Theorem 1.3.4 as
giving a list of functions that are continuous on their domains.

Notes:
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1.6 Continuity

Theorem 1.6.3 Continuous Functions
The following functions are continuous on their domains.

1. f(x) = sin x

2. f(x) = cos x

3. f(x) = tan x

4. f(x) = cot x

5. f(x) = sec x

6. f(x) = csc x

7. f(x) = ln x

8. f(x) = ax (a > 0)

In the following example, wewill show howwe apply the previous theorems.

Example 1.6.4 Determining intervals on which a function is continuous
State the interval(s) on which each of the following functions is continuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SOLUTION Weexamine each in turn, applying Theorems 1.6.1 and 1.6.3
as appropriate.
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y

Figure 1.6.4: A graph of f in
Example 1.6.4(1).

1. The two square‐root terms are continuous on the intervals [1,∞) and
(−∞, 5], respectively. As f is continuous only where each term is contin‐
uous, f is continuous on the intersection of these two intervals: [1, 5]. A
graph of f is displayed in Figure 1.6.4.

2. The functions y = x and y = sin x are each continuous everywhere, hence
their product is, too.

3. Theorem 1.6.3 states that f(x) = tan x is continuous “on its domain.” Its
domain includes all real numbers except oddmultiples of π/2. Thus f(x) =
tan x is continuous on

. . . ,

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . .

or, equivalently, on D = {x ∈ R | x ̸= (2n+1)π
2 , n ∈ Z}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricting y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

Notes:
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Chapter 1 Limits

A common way of thinking of a continuous function is that “its graph can
be sketched without lifting your pencil.” That is, its graph forms a “continu‐
ous” curve, without holes, breaks or jumps. While beyond the scope of this
text, this pseudo‐definition glosses over some of the finer points of continuity.
Very strange functions are continuous that one would be hard pressed to actu‐
ally sketch by hand.

This intuitive notion of continuity does help us understand another impor‐
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is continuous on [1, 2] (i.e., its graph can be sketched as a continu‐
ous curve from (1,−10) to (2, 5)) then we know intuitively that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val‐
ues; fmay actually equal 6 at some time, for instance, but we are guaranteed all
values between−10 and 5.

While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem and illus‐
trated in Figure 1.6.5.

a c b

f(b)

L

f(a)

x

y

y = f(x)

(a)

a ? b

f(a)

L

f(b)

x

y

y = f(x)

(b)

Figure 1.6.5: A situation where the In‐
termediate Value Theorem applies (top)
and does not (bottom).

Theorem 1.6.4 Intermediate Value Theorem
Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there
exists at least one value c in (a, b) such that f(c) = y

One important application of the Intermediate Value Theorem is root finding.
Given a function f, we are often interested in finding values of x where f(x) = 0.
These roots may be very difficult to find exactly. Good approximations can be
found through successive applications of this theorem. Suppose through direct
computationwefind that f(a) < 0 and f(b) > 0, where a < b. The Intermediate
Value Theorem states that there exists at least one c in [a, b] such that f(c) = 0.
The theorem does not give us any clue as to where that value is in the interval
[a, b], just that it exists.

Example 1.6.5 Finding roots
Show that f(x) = x3 + x+ 3 has at least one real root.

SOLUTION Wemust determine an interval onwhich the function chang‐
es from positive to negative values. We start by evaluating f at different values.
We see that f(0) = 3 > 0 and f(1) = 5 > 0. As we choose larger positive val‐
ues of x, we can see that f(x) values will continue to grow. Looking at negative
x‐values, f(−1) = 1 > 0 and f(−2) = −7 < 0 so we know f(x) must change

Notes:
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1.6 Continuity

sign in [−2,−1]. Because f(x) is a polynomial, it is continuous on all real num‐
bers so is continuous on [−2,−1]. By the Intermediate Value Theorem there is
a c in (−2,−1) where f(x) = 0. Thus f(x) must have at least one real root on
(−2,−1).

Note that in the above example you were not asked to find the root, just to
show that the function had a root.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibilities:

1. f(d) = 0 — we got lucky and stumbled on the actual value. We stop as
we found a root.

2. f(d) < 0 Thenwe know there is a root of f on the interval [d, b]—we have
halved the size of our interval, hence are closer to a good approximation
of the root.

3. f(d) > 0 Thenwe know there is a root of f on the interval [a, d]—again,we
have halved the size of our interval, hence are closer to a good approxima‐
tion of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

0.5 1

−1

−0.5

0.5

x

y

Figure 1.6.6: Graphing a root of
f(x) = x− cos x.

Example 1.6.6 Using the Bisection Method
Approximate the root of f(x) = x − cos x, accurate to three places after the
decimal.

SOLUTION Consider the graph of f(x) = x−cos x, shown in Figure 1.6.6.
It is clear that the graph crosses the x‐axis somewhere near x = 0.8. To start the
BisectionMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Iteration 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Iteration 2: f(0.7) < 0, f(0.8) > 0, and at the midpoint, 0.75, we see that
f(0.75) > 0. So replace 0.8 with 0.75 and repeat. Note that we don’t
need to continue to check the endpoints, just the midpoint. Thus we put
the rest of the iterations in Figure 1.6.7.

Notes:
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Chapter 1 Limits

Itera‐
tion # Interval Midpoint Sign

1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.6.7: Iterations of the Bisection
Method of Root Finding

Notice that in the 12th iteration we have the endpoints of the interval each
starting with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places after the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where f is 0. The
Intermediate Value Theorem states that the actual zero is still within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places after the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 iterations. In less than 8 hun‐
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iterations).

It is a simplematter to extend theBisectionMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new function gwhere g(x) = f(x)−1. Then
use the Bisection Method to solve g(x) = 0.

Similarly, given two functions f and g, we can use the Bisection Method to
solve f(x) = g(x). Once again, create a new function hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In Section 4.4 another equation solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathematics, though, so we will wait before introducing it.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph‐
ically,

• developed a method of proving the value of a limit (ε‐δ proofs),

Notes:
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1.6 Continuity

• explored when limits do not exist,

• considered limits that involved infinity, and

• defined continuity and explored properties of continuous functions.

Why? Mathematics is famous for building on itself and calculus proves to be
no exception. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quantity by a smaller and smaller number and see
what value the quotient approaches. In other words, we will want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.

Notes:
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Exercises 1.6
Terms and Concepts
1. In your own words, describe what it means for a function

to be continuous.
2. In your own words, describe what the Intermediate Value

Theorem states.
3. What is a “root” of a function?
4. Given functions f and g on an interval I, how can the Bisec‐

tion Method be used to find a value c where f(c) = g(c)?
5. T/F: If f is defined on an open interval containing c, and

lim
x→c

f(x) exists, then f is continuous at c.

6. T/F: If f is continuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is continuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is continuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is continuous on [0, 1) and [1, 2), then f is continu‐
ous on [0, 2).

10. T/F: The sum of continuous functions is also continuous.

Problems
In Exercises 11–18, a graph of a function f is given along with a
value a. Determine if f is continuous at a; if it is not, state why
it is not.

11. a = 1
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13. a = 1
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14. a = 1

0.5 1 1.5 2

0.5

1

1.5

2

x

y

15. a = 1
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16. a = 2
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17. (a) a = −2
(b) a = 0
(c) a = 2
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18. a = 3π/2
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π/2 π 3π/2 2π
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y

70



In Exercises 19–22, determine if f is continuous at the indicated
values. If not, explain why.

19. f(x) =

{
1 x = 0
sin x
x x ̸= 0

(a) x = 0
(b) x = π

20. f(x) =

{
x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0
(b) x = 1

21. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1
3 x = −1

(a) x = −1
(b) x = 10

22. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0
(b) x = 8

In Exercises 23–36, give the intervals on which the given func‐
tion is continuous.

23. f(x) = x2 − 3x+ 9
24. g(x) =

√
x2 − 4

25. g(x) =
√
4− x2

26. h(k) =
√
1− k+

√
k+ 1

27. f(t) =
√
5t2 − 30

28. g(t) = 1√
1− t2

29. g(x) = 1
1+ x2

30. f(x) = ex

31. g(s) = ln s
32. h(t) = cos t

33. f(k) =
√

1− ek

34. f(x) = sin(ex + x2)

35. f(x) =


x+1
x+4 x < 2
x2 − 3 2 ≤ x ≤ 5
6− 2x x > 5

36. f(x) =


1

x−1 x < 0
2x2 − 3x− 1 0 ≤ x ≤ 2
5x2 − 4x x > 2

37. Let f(x) =

{
x2 − 1 x < 3
x+ 5 x ≥ 3

.

Is f continuous everywhere?

38. Let f(x) =

{
x sin( 1x ) x ̸= 0
0 x = 0

.

Is f continuous everywhere?

Exercises 39–42 test your understanding of the Intermediate
Value Theorem.

39. Let f be continuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

40. Let g be continuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

41. Let f be continuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

42. Let h be a function on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 43–46, find the value(s) of a and b so that the func‐
tion is continuous on R.

43. g(x) =

{
ax2 + 3x x < 2
x3 − ax x ≥ 2

44. f(x) =

{
a2x− a x > 3
4 x ≤ 3

45. f(x) =


ax− b x < −1
2x2 + 3ax+ b −1 ≤ x < 1
4 x ≥ 1

46. f(x) =

{
x2 + 2x x ≤ a
−1 x > a

In Exercises 47–50, sketch the graph of a function that has the
following properties.

47. f is discontinuous at 3, but continuous from the left at 3,
and continuous elsewhere.

48. f is discontinuous at ‐1 and 2, but continuous from the right
at ‐1 and continuous from the left at 2, and continuous else‐
where.

49. f has a jump discontinuity at ‐2 and an infinite discontinuity
at 4 and is continuous elsewhere.

50. f has a removable discontinuity at 2, is continuous only
from the left at 5, and is continuous elsewhere.

In Exercises 51–54, show that the functions have at least one
real root.

51. f(x) = x2 + 2x− 4

52. f(x) = sin x− 1/2

53. f(x) = ex − 2

54. f(x) = cos x− sin x
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Review

55. Let f(x) =

{
x2 − 5 x < 5
5x x ≥ 5

. Find

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

56. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

57. Give an example of function f(x) for which lim
x→0

f(x) does
not exist.

72



2.0 Chapter Prerequisites
The material in this section provides a basic review of and practice problems for
pre‐calculus skills essential to your success in Calculus. You should take time to
review this section and work the suggested problems (checking your answers
against those in the back of the book). Since this content is a pre‐requisite for
Calculus, reviewing andmastering these skills are considered your responsibility.
This means thatminimal, and in some cases no, class timewill be devoted to this
section. When you identify areas that you need help with we strongly urge you
to seek assistance outside of class from your instructor or other student tutoring
service.

Rules of Exponents
We will briefly summarize the laws of exponents and equivalent forms of expo‐
nent expressions commonly used in this chapter. The laws of exponents are only
valid for the values of x and y for which the expression is defined (i.e., nonzero
real numbers in the denominator and nonnegative real numbers when roots are
even.) Our first is the product of exponents. Ifm and n are real numbers, then

xm · xn = xm+n.

Example 2.0.1 Product Law of Exponents
x5 · x7 = x5+7 = x12

x−3 · x−4 = x−3+(−4) = x−7 =
1
x7

x−1/2 · x2/3 = x−1/2+2/3 = x1/6 = 6
√
x.

Our next is the quotient of exponents. Ifm and n are real numbers, then

xm

xn
= xm−n.

Example 2.0.2 Quotient Law of Exponents
x5

x7
= x5−7 = x−2 =

1
x2

x−3

x−4 = x−3−(−4) = x1 = x

x2/3

x−1/2 = x2/3−(−1/2) = x7/6 = 6
√
x7 = x 6

√
x.



Chapter 2 Derivatives

Our third is when a power is raised to a power. Once again, we assume m
and n are real numbers. In that case,

(xm)n = xm·n.

Example 2.0.3 Power Law of Exponents
(x5)7 = x5·7 = x35

(x−3)4 = x−3·4 = x−12 =
1
x12

(x−1/2)2/3 = x(−1/2)·(2/3) = x−1/3 =
1
3
√
x
.

Our final law tells us how to distribute a power over a product and a quotient.
Ifm is a real number, then

(xy)m = xmym and
(
x
y

)m

=
xm

ym
.

Example 2.0.4 Product and Quotient Raised to a Power
(xyz)7 = x7y7z7(
x
y

)−4

=
x−4

y−4 =
y4

x4
.

Factoring and Simplifying Complex Fractions
The following examples demonstrate an efficient factoring technique that can
be used to create the various equivalent expressions often needed to complete
problems that arise in Calculus. The ability tomoveflexibly andefficiently among
different representations of an expression is an important skill to have.

Example 2.0.5 Factoring out the common factor
Factor completely to write an equivalent expression:

1. x7/3 − 4x2/3 2.
1
2
x(x− 3)−2/5 + (x− 3)3/5

SOLUTION

1. x7/3 − 4x2/3 = x2/3(x5/3 − 4) = 3
√
x2( 3

√
x5 − 4).

Notes:
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2.
1
2
x(x− 3)−2/5 + (x− 3)3/5 =

1
2
(x− 3)−2/5(x+ 2(x− 3)

)
=

1
2
(x− 3)−2/5(x+ 2x− 6)

=
1
2
(x− 3)−2/5(3x− 6)

=
3x− 6

2(x− 3)2/5
or

=
3x− 6

2 5
√
(x− 3)2

Example 2.0.6 Simplifying complex fractions
Factor out the lowest power of the common factor to simplify the complex frac‐
tion 2

3x(x− 2)− 1
3 + (x− 2) 2

3

x2
.

SOLUTION

2
3x(x− 2)−1/3 + (x− 2)2/3

x2
=

1
3 (x− 2)−1/3(2x+ 3(x− 2)

)
x2

=
2x+ 3x− 6
3x2(x− 2)1/3

=
5x− 6

3x2 3
√
x− 2

Function Composition
Function composition refers to combining functions in a way that the output
from one function becomes the input for the next function. In other words, the
range (y‐values) of one function become the domain (x‐values) of the next func‐
tion. We denote this as (f ◦ g)(x) = f(g(x)), where the output of g(x) becomes
the input of f(x).

Example 2.0.7 Composition of two functions
Given f(x) =

1
x2

and g(x) =
√
x+ 4, find (f ◦ g)(x) and (g ◦ f)(x).

SOLUTION To find (f ◦ g)(x) = f(g(x)), we substitute the function g(x)
into the function f(x). Thus,

f(g(x)) = f
(√

x+ 4
)
=

1
(
√
x+ 4)2

=
1

x+ 4
.

Notes:
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Chapter 2 Derivatives

For (g ◦ f)(x) = g(f(x)), we substitute the function f(x) into the function g(x).
Thus,

g(f(x)) = g
(

1
x2

)
=

√
1
x2

+ 4 =

√
1+ 4x2

x2
=

√
1+ 4x2
x

.

Example 2.0.8 Composition of three functions
Given f(x) = x2, g(x) =

√
4− x and h(x) = 3x − 5, find (f ◦ g ◦ h)(x) and

(g ◦ f ◦ h)(x).

SOLUTION To find (f ◦ g ◦ h)(x) we must start with the inside and work
our way out.

(f ◦ g ◦ h)(x) = f(g(h(x)))
= f(g(3x− 5))

= f
(√

4− (3x− 5)
)
= f
(√

9− 3x
)

=
(√

9− 3x
)2

= 9− 3x

For (g ◦ f ◦ h)(x), we have

(g ◦ f ◦ h)(x) = g(f(h(x)))
= g(f(3x− 5))
= g((3x− 5)2) = g(9x2 − 30x+ 25)

=
√
4− (9x2 − 30x+ 25) =

√
30x− 9x2 − 21

In this chapter we will also need to decompose a given function into two or
more, less complex functions. For any one function there is oftenmore than one
way to write the decomposition. The following examples demonstrate this.

Example 2.0.9 Decomposing a function
Given F(x) = sin(3x2 + 5), find f(x) and g(x) so that F(x) = f(g(x)).

SOLUTION One solution is f(x) = sin x and g(x) = 3x2 + 5.
Another possible solution is f(x) = sin(x+ 5) and g(x) = 3x2.

Notes:
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Exercises 2.0
Problems
In Exercises 1–4, simplify each expression. Write your answer
so that all exponents are positive.

1. (5x4y5)(2x2y3)4

2.
(
4a3/2b3

a2b−1/2

)−2

3.
(
−2x−3y7z5

)−4

(x3y−2z5)3

4. 4
√

x8y16z21

In Exercises 5–8, factor to write equivalent expressions.

5. 3x3 + 27x2 + 9x

6. 5
3
x

2
3 − 5

3 x
− 1

3

7.
1
2 x

− 1
2 (x+ 4)− 3x

1
2

(x+ 4)2

8. 6x(3x2 + 2)4(x2 − 5)2 + 24x(3x2 + 2)3(x2 − 5)3

9. If f(x) = x2 + 2x and g(x) = x− 4, find

(a) (f ◦ g)(6)
(b) (g ◦ f)(6)

(c) (f ◦ g)(x)

(d) (g ◦ f)(x)

10. If f(x) = 1
x− 5

and g(x) =
√
x− 2 find,

(a) (f ◦ g)(6)
(b) (g ◦ f)(6)

(c) (f ◦ g)(x)

(d) (g ◦ f)(x)

11. If F(x) = f(g(x)), identify f(x) and g(x).
(a) F(x) = 5

x+4

(b) F(x) =
∣∣4− x2

∣∣
(c) F(x) =

√
(x+ 2)2 − 5

12. If F(x) = f(g(h(x))), identify f(x), g(x) and h(x).

(a) F(x) = 3
√

(2x+ 1)2 (b) F(x) = 2 3√x2 + 1
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2: DERIVATIVES

The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivative. Limits describe where a function is going; derivatives describe
how fast the function is going.

2.1 Instantaneous Rates of Change: The Derivative

A common amusement park ride lifts riders to a height then allows them to free
fall a certain distance before safely stopping them. Suppose such a ride drops
riders from a height of 150 feet. Students of physics may recall that the height
(in feet) of the riders, t seconds after free fall (and ignoring air resistance, etc.)
can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall after 2 seconds (corresponding
to a height of 86 ft.). How fast will the riders be traveling at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Section 1.1 when we introduced the
difference quotient. We have

change in distance
change in time

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some time period containing t = 2. If wemake the time in‐
terval small, we will get a good approximation. (This fact is commonly used. For
instance, high speed cameras are used to track fast moving objects. Distances
are measured over a fixed number of frames to generate an accurate approxi‐
mation of the velocity.)

Notes:
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Chapter 2 Derivatives

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 ft/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan‐
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 ft/s.

We can do this for smaller and smaller intervals of time. For instance, over
a time span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 ft/s.

Over a time span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 ft/s.

Whatwe are really computing is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are computing

f(2+ h)− f(2)
h

where h is the change in time after 2 seconds.
What we really want is for h = 0, but this, of course, returns the familiar

“0/0” indeterminate form. So we employ a limit, as we did in Section 1.1.

h
Average Velocity

ft/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1.1: Approximating the instan‐
taneous velocity with average velocities
over a small time period h.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 2.1.1. It looks as though the velocity is approaching−64 ft/s.
Computing the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
(−64− 16h)

= −64.

Notes:
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2.1 Instantaneous Rates of Change: The Derivative

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2)) and
(2+h, f(2+h)), as in Figure 2.1.2.

1 2 3

−50

50

100

150

↑
2 + h

h

(2, f(2))
(2 + h, f(2 + h))

x

y

Figure 2.1.2: Computing the difference
quotient.

In Figure 2.1.3, the secant line corresponding
to h = 1 is shown in three contexts. Figure 2.1.3(a) shows a “zoomed out” ver‐
sion of fwith its secant line. In (b), we zoom in around the points of intersection
between f and the secant line. Notice how well this secant line approximates f
between those two points — it is a common practice to approximate functions
with straight lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.1.3, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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x

y
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50

100
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y

(a) (b)

1.5 2 2.5

50

100

x

y

1.5 2 2.5

50

100

x

y

(c) (d)

Figure 2.1.3: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this section. First, we formally define two of them.

Notes:
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Chapter 2 Derivatives

Definition 2.1.1 Derivative at a Point
Let f be a continuous function on an open interval I and let c be in I. The
derivative of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists.

If the limit exists, we say that f is differentiable at c; if the limit does not exist,
then f is not differentiable at c. If f is differentiable at every point in I, then f is
differentiable on I.

Definition 2.1.2 Tangent Line
Let f be continuous on an open interval I and differentiable at c, for some
c in I. The line with equation ℓ(x) = f ′(c)(x − c) + f(c) is the tangent
line to the graph of f at c; that is, it is the line through (c, f(c)) whose
slope is the derivative of f at c.

Watch the video:
The Difference Quotient — Example 1 at
https://youtu.be/1O5NEI8UuHM

Some examples will help us understand these definitions.

Example 2.1.1 Finding derivatives and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equation of the tangent
line to the graph of f at x = 1.

3. f ′(3)

4. The equation of the tangent
line to the graph f at x = 3.

SOLUTION

Notes:
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2.1 Instantaneous Rates of Change: The Derivative

1. We compute this directly using Definition 2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

(3h+ 11) = 11.

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equation, in point‐slope form,
y = 11(x− 1) + 1. In slope‐intercept form we have y = 11x− 10.

3. Again, using the definition,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

(3h+ 23)

= 23.

4. The tangent line at x = 3 has slope 23 and goes through the point (3, f(3)),
which is (3, 35). Thus the tangent line has equation y = 23(x−3)+35 =
23x− 34.

1 2 3 4

20

40

60

x

y

Figure 2.1.4: A graph of f(x) = 3x2 +
5x− 7 and its tangent lines at x = 1 and
x = 3.

A graph of f is given in Figure 2.1.4 along with the tangent lines at x = 1 and
x = 3.

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not‐
so‐difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f, the best linear approximation
to f is its tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit from a tangent‐line approxima‐
tion is a line; it is rather simple to recognize that the tangent line to a line is the

Notes:
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Chapter 2 Derivatives

line itself. We look at this in the following example.

Example 2.1.2 Finding the Derivative of a Line
Consider f(x) = 3x + 5. Find the equation of the tangent line to f at x = 1 and
x = 7.

SOLUTION We find the slope of the tangent line with Definition 2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only functions with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivative at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 2.1.3 Numerical Approximation of the Tangent Line
Approximate the equation of the tangent line to the graph of f(x) = sin x at
x = 0.

SOLUTION In order to find the equation of the tangent line, we need
a slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute
the slope, we need the derivative. This is where we will make an approximation.
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2.1 Instantaneous Rates of Change: The Derivative

Recall that
f ′(0) ≈ sin(0+ h)− sin 0

h
for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

−π − π
2

π
2

π

−1

1

x

y

Figure 2.1.5: f(x) = sin x graphed with
an approximation to its tangent line at
x = 0.

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximation of the equation of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.1.5. The graph seems to imply the
approximation is rather good.

Recall from Section 1.3 that lim
x→0

sin x
x

= 1, meaning for values of x near
0, sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 2.1.1. To find the derivative of f at x = 1, we needed
to evaluate a limit. To find the derivative of f at x = 3, we needed to again
evaluate a limit. We have this process:

input specific
number c −→ do something

to f and c −→ return
number f ′(c)

This process describes a function; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x −→ do something
to f and x −→ return

function f ′(x)

The output is the “derivative function,” f ′(x). The f ′(x) function will take a
number c as input and return the derivative of f at c. This calls for a definition.
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Definition 2.1.3 Derivative Function
Let f be a differentiable function on an open interval I. The function

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivative of f.

Notation:
Let y = f(x). The following notations all represent the derivative:

f ′(x) = y ′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notation
dy
dx

is one symbol; it is not the fraction “dy/ dx”. The
notation, while somewhat confusing at first, was chosen with care. A fraction‐
looking symbol was chosen because the derivative has many fraction‐like prop‐
erties. Among other places, we see these properties atworkwhenwe talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

Examples will help us understand this definition.

Example 2.1.4 Finding the derivative of a function
Let f(x) = 3x2 + 5x− 7 as in Example 2.1.1. Find f ′(x).

SOLUTION We apply Definition 2.1.3.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computation of f ′(x) affirm these facts.
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2.1 Instantaneous Rates of Change: The Derivative

Example 2.1.5 Finding the derivative of a function
Let f(x) =

1
x+ 1

. Find f ′(x).

SOLUTION We apply Definition 2.1.3.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find a common denominator and subtract; factor 1/h out front to facilitate
reading.

f ′(x) = lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2

So f ′(x) =
−1

(x+ 1)2
. To practice using our notation, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 2.1.6 Finding the derivative of a function
Find the derivative of f(x) = sin x.

SOLUTION Before applying Definition 2.1.3, note that once the deriva‐
tive is found, we can find the actual tangent line to f(x) = sin x at x = 0, whereas
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87



Chapter 2 Derivatives

we settled for an approximation in Example 2.1.3.

f ′(x)

= lim
h→0

sin(x+ h)− sin x
h

(
Use trig identity

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fractions)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x .

We have found that when f(x) = sin x, f ′(x) = cos x (see Figure 2.1.6).

‐2π − 3π
2

−π − π
2

π
2

π 3π
2

2π
−1

1 f(x) = sin xf ′(x) = cos x

x

y

Figure 2.1.6: The function f(x) = sin x and its derivative f ′(x) = cos x.
Initially, this might be somewhat surprising; the result of a tedious limit proc‐

ess and the sine function is a nice function. Then again, perhaps this is not entire‐
ly surprising. The sine function is periodic — it repeats itself on regular intervals.
Therefore its rate of change also repeats itself on the same regular intervals. In
fact, if we think about f ′(x) as the slope of the tangent to the sine curve we
notice the following

• when the slope of tangent lines is 0 then f ′(x) = cos x crosses the x−axis;

• when the slopes of the tangent lines are positive then f ′ lies above the
x−axis; and

• when the slopes of the tangent lines are negative then f ′ lies below the
x−axis.

We should have known the derivative would be periodic; we now know ex‐
actly which periodic function it is.

Thinking back to Example 2.1.3, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivative. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.
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2.1 Instantaneous Rates of Change: The Derivative

Example 2.1.7 Finding the derivative of a piecewise defined function
Find the derivative of the absolute value function,

f(x) = |x| =

{
−x x < 0
x x ≥ 0.

See Figure 2.1.7.

SOLUTION We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise‐
defined, we need to consider separately the limits when x < 0 and when x > 0.

−1 −0.5 0.5 1

0.5

1

x

y

Figure 2.1.7: The absolute value func‐
tion, f(x) = |x|. Notice how the slope of
the lines (and hence the tangent lines)
abruptly changes at x = 0.

When x < 0:
d
dx
(
−x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computation shows that
d
dx
(
x
)
= 1.

We need to also find the derivative at x = 0. By the definition of the deriva‐
tive at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our function’s definition switches from one piece
to the other, we need to consider left and right‐hand limits. Consider the follow‐
ing, where we compute the left and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

−1 −0.5 0.5 1

−1

1

x

y

Figure 2.1.8: A graph of the derivative of
f(x) = |x|.

The last lines of each column tell the story: the left and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differentiable at 0; see
Figure 2.1.8. So we have

f ′(x) =

{
−1 x < 0
1 x > 0

.

At x = 0, f ′(x) does not exist; there is a jump discontinuity at 0. So f(x) = |x| is
differentiable everywhere except at 0.
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Chapter 2 Derivatives

The point of non‐differentiability came where the piecewise defined func‐
tion switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 2.1.8 Finding the derivative of a piecewise defined function

Find the derivative of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2

. See Figure 2.1.9.

SOLUTION Using Example 2.1.6, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

π
2

0.5

1

x

y

Figure 2.1.9: A graph of f(x) as defined
in Example 2.1.8.

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have

f ′(x) =

{
cos x x < π/2
0 x > π/2

.

We still need to find f ′(π/2). Notice at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quotient limit at
x = π/2, utilizing again left and right‐hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0

π
2

0.5

1

x

y

Figure 2.1.10: A graph of f ′(x) in Exam‐
ple 2.1.8.

Since both the left and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =

{
cos x x ≤ π/2
0 x > π/2

.

See Figure 2.1.10 for a graph of this function.

Recall we pseudo‐defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo‐definition for

Notes:
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2.1 Instantaneous Rates of Change: The Derivative

differentiability as well: it is a continuous function that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.1.7. Even though the func‐
tion f in Example 2.1.8 is piecewise‐defined, the transition is “smooth” hence it
is differentiable. Note how in the graph of f in Figure 2.1.9 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

To better understand the definition of a derivative,
experiment with the Geogebra app at
http://mathinsight.org/applet/secant_
line_slope.

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivativemean?”

Notes:
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Exercises 2.1
Terms and Concepts
1. T/F: Let f be a position function. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. In your own words, explain the difference between the av‐
erage rate of change and instantaneous rate of change.

3. In your own words, explain the difference between Defini‐
tions 2.1.1 and 2.1.3.

4. Let y = f(x). Give three different notations equivalent to
“f ′(x).”

Problems
In Exercises 5–14,

(a) use the definition of the derivative to compute the der‐
ivative of the given function.

(b) Find the tangent line to the graph of the given function
at x = c.

5. f(x) = 6 at x = −2
6. f(x) = 2x at x = 3
7. f(x) = 4− 3x at x = 7
8. g(x) = x2 at x = −2
9. h(x) = 2x− x2 at x = 1

10. f(x) = 3x2 − x+ 4 at x = −1
11. g(x) =

√
x+ 3 at x = 1

12. r(x) = 1
x
at x = −2

13. h(x) = 3√
x
at x = 4

14. f(x) = 1
x− 2

at x = 3

In Exercises 15–18, each limit represents the derivative of
some function, f, at some number c. State an appropriate f
and c for each.

15. lim
h→0

√
16+ h− 4

h

16. lim
h→0

(3+ h)4 − 81
h

17. lim
h→0

1
2+h − 1

2

h

18. lim
h→0

cos(−π + h) + 1
h

In Exercises 19–24, a function f and an x‐value a are given. App‐
roximate the equation of the tangent line to the graph of f at
x = a by numerically approximating f ′(a), using h = 0.1.

19. f(x) = x2 + 2x+ 1, x = 3
20. f(x) =

√
x, x = 4

21. f(x) = 10
x+ 1

, x = 9

22. f(x) = ex, x = 2

23. f(x) = ln x, x = 2

24. f(x) = cos x, x = 0

25. The graph of f(x) = x2 − 1 is shown.
(a) Use the graph to approximate the slope of the tan‐

gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definition, find f ′(x).
(c) Find the slope of the tangent line at the points

(−1, 0), (0,−1) and (2, 3).

−2 −1 1 2
−1

1

2

3

x

y

26. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan‐
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definition, find f ′(x).
(c) Find the slope of the tangent line at the points (0, 1)

and (1, 0.5).

−1 1 2 3

1

2

3

4

5

x

y

In Exercises 27–32, a graph of a function f(x) is given. Using
the graph, sketch f ′(x).

27.

−2 −1 1 2 3 4
−1

1

2

3

x

y
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28.
−6 −4 −2 2

−2

2

x

y

29.
−2 −1 1 2

−5

5

x

y

30.

−1

−0.5

0.5

1

−2π −π π 2π
x

y

31.
−2 −1 1 2−3 3

−2

2

−4

4

−6

6

x

y

32.
−5 5

−10

−5

5

10

x

y

In Exercises 33–34, a graph of g(x) is given. Using the graph,
answer the following questions.

(a) Where is g(x) > 0?
(b) Where is g(x) < 0?
(c) Where is g(x) = 0?

(d) Where is g′(x) > 0?
(e) Where is g′(x) < 0?
(f) Where is g′(x) = 0?

33.

−2 −1 1 2

−5

5

x

y

34.

−2 −1 1 2

−5

5

x

y

35. Suppose that f(x) is defined on an open interval containing
the number c. Suppose that the limit

lim
h→0

f(c+ h)− f(c)
h

exists. Show that f(x) is continuous at x = c. This shows
that we could drop the assumption that f(x) is continuous
at x = c in the definition of f ′(c).

Review

36. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

37. Use the BisectionMethod to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

38. Give intervals on which each of the following functions are
continuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

39. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f continu‐
ous?

−4 −2

−1

1

2

3

x

y
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Chapter 2 Derivatives

2.2 Interpretations of the Derivative
The previous section defined the derivative of a function and gave examples of
how to compute it using its definition (i.e., using limits). The section also started
with a brief motivation for this definition, that is, finding the instantaneous ve‐
locity of a falling object given its position function. The next section will give us
more accessible tools for computing the derivative, tools that are easier to use
than repeated use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do I compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em‐
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

Interpretationof theDerivative #1: Instantaneous Rate of Change
The previous section started with an example of using the position of an object
(in this case, a falling amusement‐park rider) to find the object’s velocity. This
type of example is often used when introducing the derivative because we tend
to readily recognize that velocity is the instantaneous rate of change of position.
In general, if f is a function of x, then f ′(x) measures the instantaneous rate of
change of f with respect to x. Put another way, the derivative answers “When
x changes, at what rate does f change?” Thinking back to the amusement‐park
ride, we asked “When time changed, at what rate did the height change?” and
found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have intentionally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construction. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximation of
the distance traveled?

One could argue the only good approximation, given the information pro‐
vided, would be based on “distance = rate × time.” In this case, we assume a
constant rate of 60 mph with a time of 5/60 hours. Hence we would approxi‐
mate the distance traveled as 5 miles.

Referring back to the falling amusement‐park ride, knowing that at t = 2 the
velocity was −64 ft/s, we could reasonably assume that 1 second later the rid‐
ers’ height would have dropped by about 64 feet. Knowing that the riders were
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accelerating as they fell would inform us that this is an under‐approximation. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the Derivative

It is useful to recognize the units of the derivative function. If y is a function of
x, i.e., y = f(x) for some function f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly written as “ft/s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the fraction‐like behavior of
the derivative in the notation:

the units of
dy
dx

are
units of y
units of x

.

Example 2.2.1 The meaning of the derivative: World Population
Let P(t) represent the world population t minutes after 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org).
It is also fairly accurate to state that P ′(0) = 156; that is, at midnight on Janu‐
ary 1, 2012, the population of the world was growing by about 156 people per
minute (note the units). Twenty days later (or, 28,800 minutes later) we could
reasonably assume the population grew by about (28, 800)(156) = 4, 492, 800
people.

Example 2.2.2 The meaning of the derivative: Manufacturing
The term widget is an economic term for a generic unit of manufacturing out‐
put. Suppose a company produces widgets and knows that the market supports
a price of $10 per widget. Let P(n) give the profit, in dollars, earned bymanufac‐
turing and selling n widgets. The company likely cannot make a (positive) profit
making just one widget; the start‐up costs will likely exceed $10. Mathematical‐
ly, we would write this as P(1) < 0.

What do P(1000) = 500 and P ′(1000) = 0.25 mean? Estimate P(1100).

SOLUTION The equation P(1000) = 500 means that selling 1,000 wid‐
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
when producing 1000 widgets, the profit is increasing at rate of $0.25 per wid‐
get (the units are “dollars per widget.”) Since we have no other information to
use, our best approximation for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.
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The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60 mph” example at the beginning
of this section. Five minutes after looking at the speedometer, our best approx‐
imation for distance traveled assumed the rate of change was constant. In Ex‐
amples 2.2.1 and 2.2.2 we made similar approximations. We were given rate of
change information which we used to approximate total change. Notationally,
we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.
This approximation is best when h is “small.” “Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Derivative and Motion
One of the most fundamental applications of the derivative is the study of mo‐
tion. Let s(t) be a position function, where t is time and s(t) is distance. For
instance, s could measure the height of a projectile or the distance an object
has traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object after t sec‐
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change— it measures velocity.

Now consider v(t), a velocity function. That is, at time t, v(t) gives the veloci‐
ty of an object. The derivative of v, v ′(t), gives the instantaneous rate of velocity
change — acceleration. (We often think of acceleration in terms of cars: a car
may “go from 0 to 60 in 4.8 seconds.” This is an average acceleration, ameasure‐
ment of how quickly the velocity changed.) If velocity is measured in feet per
second, and time is measured in seconds, then the units of acceleration (i.e., the
units of v ′(t)) are “feet per second per second,” or (ft/s)/s. We often shorten
this to “feet per second squared,” or ft/s2, but this tends to obscure themeaning
of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32ft/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleration of 32(ft/s)/s means that the velocity changes by
32ft/s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units ft/s and t is measured in seconds. The
ball will have a positive velocity while traveling upwards and a negative velocity
while falling down. The acceleration is thus −32ft/s2. If v(1) = 20ft/s, then
when t = 2, the velocity will have decreased by 32ft/s; that is, v(2) = −12ft/s.
We can continue: v(3) = −44ft/s, and we can also figure that v(0) = 52ft/s.

These ideas are so important we write them out as a Key Idea.
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2.2 Interpretations of the Derivative

Key Idea 2.2.1 The Derivative and Motion
1. Let s(t) be the position function of an object. Then s ′(t) is the

velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v ′(t) is the
acceleration function of the object.

We now consider the second interpretation of the derivative given in this sec‐
tion. This interpretation is not independent from the first by any means; many
of the same concepts will be stressed, just from a slightly different perspective.

Interpretation of the Derivative #2: The Slope of the Tangent Line

Given a function y = f(x), the difference quotient
f(c+ h)− f(c)

h
gives a change

in y values divided by a change in x values; i.e., it is a measure of the “rise over
run,” or “slope,” of the line that goes through two points on the graph of f:(
c, f(c)

)
and

(
c + h, f(c + h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by computing f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Watch the video:
Interpreting slope of a curve exercise at
https://youtu.be/CpDfay5NeCg

Example 2.2.3 Understanding the derivative: the rate of change
Consider

1 2 3 4

4

8

12

16

x

y

Figure 2.2.1: A graph of f(x) = x2 and
tangent lines.

f(x) = x2 as shown in Figure 2.2.1 with tangent lines at x = 1 and
x = 3. It is clear that at x = 3 the function is growing faster than at x = 1, as it
is steeper at x = 3. How much faster is it growing?

SOLUTION We can answer this more easily after we learn to quickly

Notes:
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Chapter 2 Derivatives

compute derivatives in the following section. For now, we will answer graphi‐
cally, by considering the slopes of the respective tangent lines.

With practice, one can fairly effectively sketch tangent lines to a curve at a
particular point. In Figure 2.2.1, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three times as fast.

1 2 3

−5

5 f(x)

f ′(x)

x

y

Figure 2.2.2: Graphs of f and f ′ in Exam‐
ple 2.2.4, along with tangent lines.

Example 2.2.4 Understanding the graph of the derivative
Consider the graph of f(x) and its derivative, f ′(x), in Figure 2.2.2. Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

SOLUTION To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.2.2 as well.

Included on the graph of f ′ in this figure are filled circles where x = 1, x = 2
and x = 3 to help better visualize the y value of f ′ at those points.

Example 2.2.5 Approximation with the derivative
Consider again the graph of f(x) and its derivative f ′(x) in Example 2.2.4.

2.8 3 3.2
2

3

4

x

y

Figure 2.2.3: Zooming in on f and its
tangent line at x = 3 for the function
given in Examples 2.2.4 and 2.2.5.

Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

SOLUTION Figure 2.2.3 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near x = 3, the tangent line makes an excellent
approximation of f. Since lines are easy to deal with, often it works well to app‐
roximate a function with its tangent line. (This is especially true when you don’t
actually know much about the function at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 2.2.4, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is often useful to leave the tangent line in point‐slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.
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To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 2.2.5, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computation. In reality, we often only know two things:

1. What f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the location of an object and its instan‐
taneous velocity at a particular point in time. We do not have a “function f ”
for the location, just an observation. This is enough to create an approximating
function for f.

This last example has a direct connection to our approximation method ex‐
plained above after Example 2.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then computing the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 2.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximationmethod used above! Not only does itmake
intuitive sense, as explained above, it makes analytical sense, as this approxima‐
tion method is simply using a tangent line to approximate a function’s value.

It is critically important to understand the derivative. When f is a function
of x, f ′(x)measures the instantaneous rate of change of f with respect to x and
gives the slope of the tangent line to f at x.
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Exercises 2.2
Terms and Concepts
1. What is the instantaneous rate of change of position

called?
2. Given a function y = f(x), in your ownwords describe how

to find the units of f ′(x).
3. What functions have a constant rate of change?

Problems
4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).
5. Given P(100) = −67 and P ′(100) = 5, approximate

P(110).
6. Given z(25) = 187 and z′(25) = 17, approximate z(20).
7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de‐

scribed in this section, which approximation is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea‐
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).
9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurant with x customers. What are the units of V ′(x)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a
straight line t seconds after starting. What are the units of
v ′(t)?

12. The height H, in feet, of a river is recorded t hours after
midnight, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of building a factory
and then producing and selling c cars.
(a) What are the units of P ′(c)?
(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours after
midnight on July 4 in Sidney, NE.
(a) What are the units of T ′(h)?
(b) Is T ′(8) likely greater than or less than 0? Why?
(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15–18, graphs of functions f(x) and g(x) are given.
Identify which function is the derivative of the other.

15.

−4 −2 2 4

−4

−2

2

4

f(x)

g(x)

x

y

16.

2

−4

−2

2

4
f(x)g(x)

x

y

17.

−5 5

−5

5

f(x)

g(x)
x

y

18.

−4 −2 2 4

−2

2
f(x)

g(x)

x

y

19. If the tangent line to y = f(x) at (6, 1) passes through the
point (2, 4), find f(6) and f ′(6).

20. Sketch the graph of a function f for which f(0) = 0, f ′(0) >
0, f ′(1) = 0, and f ′(3) < 0.

21. Sketch the graph of a function h for which h(1) = 0,
h′(1) > 0, h′(2) = 0, and h′(3) > 0.

22. At which points does the tangent line to y = x2 + 1 pass
through the origin?

Review

In Exercises 23–24, use the definition to compute the deriva‐
tives of the following functions.

23. f(x) = 5x2

24. f(x) = (x− 2)3

In Exercises 25–26, numerically approximate the value of f ′(x)
at the indicated x value.

25. f(x) = cos x at x = π.

26. f(x) =
√
x at x = 9.
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2.3 Basic Differentiation Rules

2.3 Basic Differentiation Rules
The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx+ b. What is y ′? With‐
out limits, recognize that linear functions are characterized by being functions
with a constant rate of change (the slope). The derivative, y ′, gives the instanta‐
neous rate of change; with a linear function, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = ax2 + bx+ c. Using the definition of the derivative, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

(ah+ 2ax+ b)

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this section (and in some sections to follow) we will learn some of what
mathematicians have already discovered about the derivatives of certain func‐
tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 2.3.1 Derivatives of Common Functions
1. Constant Rule: d

dx
(
c
)
= 0, 2. Power Rule: d

dx
(xn) = nxn−1,

where c is a constant. where n is any real number.

3.
d
dx

(sin x) = cos x 4.
d
dx

(cos x) = − sin x

5.
d
dx

(ex) = ex 6.
d
dx

(ln x) =
1
x

This theorem starts by stating an intuitive fact: constant functions have a
rate of change of zero, as they are constant. Therefore their derivative is 0. The
proof is left as an exercise.

The theorem then states some fairly amazing things.

Notes:
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Chapter 2 Derivatives

In Part 2, the Power Rule states that the derivatives of functions of the form
y = xn where n is ANY real number are very straightforward: multiply by the
power, then subtract 1 from the power. This allows us to differentiate Power
Functions, Root Functions, and functionswith irrational exponents. Theworkwe
have done so far only allows us to prove the Power Rulewhen n is a non‐negative
integer, which is presented here. We will provide proofs for other values of n as
we add the necessary tools to our knowledge of calculus.

Proof of Differentiation Power Rule when n is a non‐negative integer
If n = 0, then f(x) = x0 = 1 (except when x = 0, when the expression is
indeterminate). This means that

f ′(x) = lim
h→0

1− 1
h

= lim
h→0

0
h
= 0 = 0x0−1

as claimed. Now let f(x) = xn, where n ∈ Z+. By the definition of derivative,

f ′(x) = lim
h→0

(x+ h)n − xn

h

= lim
h→0

(x+ h)n − xn

h
use the Binomial Theorem to expand (x+ h)n

= lim
h→0

(n
0
)
xn +

(n
1
)
hxn−1 +

(n
2
)
h2xn−2 + · · ·+

( n
n−1
)
hn−1x+

(n
n

)
hn − xn

h

= lim
h→0

(n
1
)
hxn−1 +

(n
2
)
h2xn−2 + · · ·+

( n
n−1
)
hn−1x+

(n
n

)
hn

h

= lim
h→0

h
[(n

1
)
xn−1 +

(n
2
)
hxn−2 + · · ·+

( n
n−1
)
hn−2x+

(n
n

)
hn−1

]
h

, divide h

= lim
h→0

[(
n
1

)
xn−1 +

(
n
2

)
hxn−2 + · · ·+

(
n

n− 1

)
hn−2x+

(
n
n

)
hn−1

]
,

= nxn−1 since
(
n
1

)
= n □

Weproved Theorem2.3.1 part 3 in Section 2.1 and part 4 is left as an exercise.
In parts 5 and 6 we see something incredible about the functions y = ex and
y = ln x. We will use these rules freely, unfortunately their proofs will have to
wait until we know a few more calculus techniques.

Let’s practice using this theorem.
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Example 2.3.1 Using Theorem 2.3.1 to find, and use, derivatives
Let f(x) = x3.

1. Find f ′(x).

2. Find the equation of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SOLUTION

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equation of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equation y = 3(x−(−1))+
(−1) = 3x+ 2.

−2 −1 1 2

−4

−2

2

4

x

y

Figure 2.3.1: A graph of f(x) = x3, along
with its derivative f ′(x) = 3x2 and its
tangent line at x = −1.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ (−1)3 + 3(−1.1− (−1)) = −1+ 3(−.1) = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.3.1.

Theorem 2.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = x3, but it
does not tell how to compute the derivative of y = 2x3, y = x3 + sin x, nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next section).

Theorem 2.3.2 Properties of the Derivative
Let f and g be differentiable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant Multiple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Notes:
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Chapter 2 Derivatives

Proof of Sum Rule for Differentiation
Let f and g be differentiable on an open interval I and let c be a real number,

d
dx

(f(x) + g(x)) = lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]
h

= lim
h→0

[f(x+ h)− f(x)] + [g(x+ h)− g(x)]
h

= lim
h→0

[f(x+ h)− f(x)]
h

+ lim
h→0

g(x+ h)− g(x)
h

= f ′(x) + g′(x) □

Watch the video:
Basic Derivative Examples at
https://youtu.be/3dJepii_rJ0

Theorem 2.3.2 allows us to find the derivatives of a wide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 2.1.4 that we found, using the limit definition,
the derivative of f(x) = 3x2 + 5x − 7. We can now find its derivative without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedantic here, showing every step. Normally we would do all
the arithmetic and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Example 2.3.2 Using Theorems 2.3.1 and 2.3.2 to find derivatives
Use Theorems 2.3.1 and 2.3.2 to differentiate

1. g(x) = (x2 + 1)3 2. f(x) = ln
√
x
8

SOLUTION Given the differentiation rules we have thus far, our only op‐
tion for finding g′(x) is to first multiply g(x) out and then apply the sum and

Notes:
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2.3 Basic Differentiation Rules

power rules. We see that

g(x) = x6 + 3x4 + 3x2 + 1

thus, g′(x) = 6x5 + 12x3 + 6x.

To differentiate f(x) we will first need to use the Laws of Logarithms to ex‐
pand f as

f(x) = ln
√
x
8

= ln x
1
2 − ln 8

=
1
2
ln x− ln 8

so that,
f ′(x) =

1
2
· 1
x
− 0 =

1
2
x.

Example 2.3.3 Using the tangent line to approximate a function value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SOLUTION This problem is intentionally ambiguous; we are to approxi‐
mate using an appropriate tangent line. How good of an approximation are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all time.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do better? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 2.3.1 we find f ′(x) = cos x+2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximation is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places after the decimal:
f(3) = 7.1411. Our initial guesswas 7; our tangent line approximationwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy sometime, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximating, and many scientists, engineers and mathematicians often face
problems too hard to solve directly. So they approximate.
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Chapter 2 Derivatives

Higher Order Derivatives
The derivative of a function f is itself a function, therefore we can take its deriv‐
ative. The following definition gives a name to this concept and introduces its
notation.

Definition 2.3.1 Higher Order Derivatives
Let y = f(x) be a differentiable function on I.

1. The second derivative of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third derivative of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth derivative of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

Note: Definition 2.3.1 comes with
the caveat “Where the correspond‐
ing limits exist.” With f differentiable
on I, it is possible that f ′ is not differ‐
entiable on all of I, and so on.

In general, when finding the fourth derivative and on, we resort to the f (4)(x)
notation, not f ′′′′(x); after a while, too many ticks is too confusing.

Let’s practice using this new concept.

Example 2.3.4 Finding higher order derivatives
Find the first four derivatives of the following functions:

1. f(x) = 4x2 2. f(x) = sin x 3. f(x) = 5ex

SOLUTION

1. Using the Power and Constant Multiple Rules, we have: f ′(x) = 8x. Con‐
tinuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

Notice how all successive derivatives will also be 0.

Notes:

106
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2. We employ Theorem 2.3.1 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 2.3.1 and the ConstantMultiple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

Interpreting Higher Order Derivatives
What do higher order derivativesmean? What is the practical interpretation?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function f is the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 2.2.1, f ′ describes the rate of position change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement‐park riders free‐falling with posi‐
tion function f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t ft/s and
f ′′(t) = −32 (ft/s)/s. We may recognize this latter constant; it is the accelera‐
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short‐
ened to “feet per second squared,” written as “ft/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f.” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”

Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of seriesmakes extensive use of higher order derivatives.
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that d
dx

(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx

(
ln x

)
?

3. Give an example of a function f(x) where f ′(x) = f(x).
4. Give an example of a function f(x) where f ′(x) = 0.
5. The derivative rules introduced in this section explain how

to compute the derivative of which of the following func‐
tions?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17
• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivative
of a function f(x).

7. Give an example of a function where f ′(x) ̸= 0 and
f ′′(x) = 0.

8. Explain in your own words what the second derivative
“means.”

9. If f(x) describes a position function, then f ′(x) describes
what kind of function? What kind of function is f ′′(x)?

10. Let f(x) be a function measured in pounds, where x is mea‐
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11–28, compute the derivative of the given func‐
tion.

11. f(x) = 7x2 − 5x+ 7
12. g(x) = 14x3 + 7x2 + 11x− 29
13. m(t) = 9t5 − 1

8 t
3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ
15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t
17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1
19. h(t) = et − sin t− cos t
20. f(x) = ln(5x2)
21. f(t) = ln(17) + e2 + sin π/2
22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. h(x) = x5 − 2x3 + x2

x2

27. f(x) = x2 + 1√
x

28. g(θ) = 1− sin2 θ
cos θ

29. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0 and a, b ̸= 1.
(a) Rewrite this identity when b = e, i.e., using loge x =

ln x.
(b) Use part (a) to find the derivative of y = loga x.
(c) Give the derivative of y = log10 x.

30. Prove the Constant Rule: d
dx

(c) = 0, where c is constant.

31. The figure shows the graphs of f, f ′, and f ′′. Identify each
curve and explain your choices.

a c

b

x

y

32. The figure shows the graphs of f, f ′, f ′′ and f ′′′. Identify
each curve and explain your choices.

dcba

x

y

In Exercises 33–38, compute the first four derivatives of the
given function.
33. f(x) = x6

34. g(x) = 2 cos x
35. h(t) = t2 − et

36. p(θ) = θ4 − θ3
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37. f(θ) = sin θ − cos θ

38. f(x) = 1,100

39. The position of a object is described by s(t) = t4 − 4t2,
t ≥ 0, where s is in feet and t is in seconds. Find
(a) the velocity and acceleration functions for the ob‐

ject,
(b) the acceleration after 1.5 seconds, and
(c) the time(s), in seconds, when the object is at rest.

40. The position of an object is described by s(t) = 5et − 5t,
where s is in inches and t is in seconds. Find
(a) the velocity and acceleration functions for the ob‐

ject,
(b) the acceleration after 2 seconds, and
(c) the acceleration when the object is at rest.

In Exercises 41–46, find the equations of the tangent line to
the graph of the function at the given point.

41. f(x) = x3 − x at x = 1
42. f(t) = et + 3 at t = 0
43. g(x) = ln x at x = 1
44. f(x) = 4 sin x at x = π/2
45. f(x) = −2 cos x at x = π/4
46. f(x) = 2x+ 3 at x = 5

47. Find the two values of n so that the function y = xn satisfies
the differential equation x2y ′′ + 2xy ′ − 6y = 0.

Review
48. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
49. Approximate the value of (3.01)4 using the tangent line to

f(x) = x4 at x = 3.
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Chapter 2 Derivatives

2.4 The Product and Quotient Rules
The previous section showed that, in some ways, derivatives behave nicely. The
Constant Multiple and Sum/Difference Rules established that the derivative of
f(x) = 5x2 + sin xwas not complicated. We neglected computing the derivative
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivatives are
not as straightforward. (If you had to guess what their respective derivatives are,
youwould probably guess wrong.) For these, we need the Product andQuotient
Rules, respectively, which are defined in this section.

We begin with the Product Rule.

Theorem 2.4.1 Product Rule
Let f and g be differentiable functions on an open interval I. Then f · g is
a differentiable function on I, and

d
dx

(
f(x)g(x)

)
= f(x)g ′(x) + f ′(x)g(x).

Important: d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x). While this answer is simpler than

the Product Rule, it is wrong. We can show that this is wrong by considering the
functions f(x) = x2 and g(x) = x5.

Using the WRONG rule we get
d
dx

[f(x)g(x)] = 2x · 5x4 = 10x5. However, when
we simplify the product first and apply the Power Rule, f · g = x2 · x5 = x7 and

d
dx

[f(x)g(x)] = 7x6 ̸= 10x5.

Applying the real Product Rule we see that,
d
dx

[f(x)g(x)] = x2
d
dx

(x5) +
d
dx

(x2) · x5

= x2 · 5x4 + 2x · x5

= 7x6

Watch the video:
The Product Rule for Derivatives at
https://youtu.be/uPCjqfT0Ixg

Notes:
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2.4 The Product and Quotient Rules

We practice using this new rule in an example, followed by a proof of the
theorem.

Example 2.4.1 Using the Product Rule
Use the Product Rule to compute the derivative of y = 5x2 sin x. Evaluate the
derivative at x = π/2.

SOLUTION To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

π
2

π

5

10

15

20

x

y

Figure 2.4.1: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

At x = π/2, we have

y ′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Fig‐
ure 2.4.1. While this does not prove that the Product Rule is the correct way to
handle derivatives of products, it helps validate its truth.

Proof of the Product Rule
By the limit definition, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of −f(x + h)g(x) + f(x + h)g(x), and then do some
regrouping as shown.

Notes:
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Chapter 2 Derivatives

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+
(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

= lim
h→0

f(x+ h)
g(x+ h)− g(x)

h
+ lim

h→0

f(x+ h)− f(x)
h

g(x)

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)
h

+ lim
h→0

f(x+ h)− f(x)
h

lim
h→0

g(x)

= f(x)g ′(x) + f ′(x)g(x). □
It is often true that we can recognize that a theorem is true through its proof

yet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.2 Exploring alternate derivative methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the derivative, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SOLUTION We first expand the expression for y; a little algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′;

y ′ = 8x3 + 9x2 − 12x.

Now apply the Product Rule.

y ′ = (x2 + 3x+ 1) · d
dx

(2x2 − 3x+ 1) +
d
dx

(x2 + 3x+ 1) · (2x2 − 3x+ 1)

= (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)
=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivative of the product is the
product of the derivatives.” Thus we are tempted to say that y ′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct.

Notes:
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2.4 The Product and Quotient Rules

Example 2.4.3 Using the Product Rule with a product of three functions
Let y = x3 ln x cos x. Find y ′.

SOLUTION Wehave a product of three functionswhile the Product Rule
only specifies how to handle a product of two functions. Ourmethod of handling
this problem is to simply group the latter two functions together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = (x3)
(
ln x cos x

)′
+ 3x2

(
ln x cos x

)
To evaluate

(
ln x cos x

)′, we apply the Product Rule again:
= (x3)

(
ln x(− sin x) +

1
x
cos x

)
+ 3x2

(
ln x cos x

)
= x3 ln x(− sin x) + x3

1
x
cos x+ 3x2 ln x cos x

Recognize the pattern in our answer above: when applying the Product Rule to a
product of three functions, there are three terms added together in the final der‐
ivative. Each term contains only one derivative of one of the original functions,
and each function’s derivative shows up in only one term. It is straightforward to
extend this pattern to finding the derivative of a product of 4 or more functions.

We consider one more example before discussing another derivative rule.

Example 2.4.4 Using the Product Rule
Find the derivatives of the following functions.

1. f(x) = x ln x 2. g(x) = x ln x− x.

SOLUTION Recalling that the derivative of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log function ln x is an important function (it
is), it seems worthwhile to know a function whose derivative is ln x. We have
found one. (We leave it to the reader to find others; a correct answer will be
very similar to this one.)

Notes:
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Chapter 2 Derivatives

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 2.4.2 Quotient Rule
Let f and g be differentiable functions defined on an open interval I,
where g(x) ̸= 0 on I. Then f/g is differentiable on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g ′(x)
[g(x)]2

.

Proof of the Quotient Rule
Let the functions f and g be defined and g(x) ̸= 0 on an open interval I. By the
definition of derivative,

d
dx

(
f(x)
g(x)

)
= lim

h→0

f(x+h)
g(x+h) −

f(x)
g(x)

h

= lim
h→0

[(
f(x+ h)
g(x+ h)

− f(x)
g(x)

)
· 1
h

]

= lim
h→0

[(
f(x+ h)g(x)− f(x)g(x+ h)

g(x+ h)g(x)

)
· 1
h

]
Adding and subtracting the term f(x)g(x) in the numerator does not change

the value of the expression and allows us to separate f and g so that

d
dx

(
f(x)
g(x)

)
= lim

h→0

[(
f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

g(x+ h)g(x)

)
· 1
h

]

= lim
h→0

[
f(x+ h)g(x)− f(x)g(x)

hg(x+ h)g(x)
+

f(x)g(x)− f(x)g(x+ h)
hg(x+ h)g(x)

]

= lim
h→0

[
g(x) f(x+ h)− f(x)

hg(x+ h)g(x)
+ f(x)g(x)− g(x+ h)

hg(x+ h)g(x)

]

= lim
h→0

g(x) f(x+h)−f(x)
h − f(x) g(x+h)−g(x)

h
g(x+ h)g(x)

=
lim
h→0

g(x) · lim
h→0

f(x+ h)− f(x)
h

− lim
h→0

f(x) · lim
h→0

g(x+ h)− g(x)
h

lim
h→0

g(x+ h) · lim
h→0

g(x)

Notes:
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2.4 The Product and Quotient Rules

=
g(x)f ′(x)− f(x)g ′(x)

[g(x)]2
□

Let’s practice using the Quotient Rule.

Example 2.4.5 Using the Quotient Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

SOLUTION Directly applying the Quotient Rule gives:

d
dx

(
5x2

sin x

)
=

sin x d
dx (5x

2)− 5x2 d
dx (sin x)

(sin x)2

=
sin x · 10x− 5x2 · cos x

sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

TheQuotient Rule allows us to fill in holes in our understanding of derivatives
of the common trigonometric functions. We start with finding the derivative of
the tangent function.

Example 2.4.6 Using the Quotient Rule to find d
dx
(
tan x

)
.

Find the derivative of y = tan x.

SOLUTION At first, one might feel unequipped to answer this question.
But recall that tan x = sin x/ cos x, so we can apply the Quotient Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x d
dx (sin x)− sin x d

dx (cos x)
(cos x)2

=
cos x cos x− sin x(− sin x)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

− π
2 − π

2
π
4

π
2

−10

−5

5

10

x

y

Figure 2.4.2: A graph of y = tan x along
with its tangent line at x = π/4.

This is a beautiful result. To confirm its truth, we can find the equation of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.4.2.

Notes:
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Chapter 2 Derivatives

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sin x in Exam‐
ple 2.1.6 and stated the derivative of the cosine function in Theorem 2.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 2.3.1 and the Quotient Rule.

Theorem 2.4.3 Derivatives of Trigonometric Functions

1.
d
dx
(
sin x

)
= cos x 2.

d
dx
(
cos x

)
= − sin x

3.
d
dx
(
tan x

)
= sec2 x 4.

d
dx
(
cot x

)
= − csc2 x

5.
d
dx
(
sec x

)
= sec x tan x 6.

d
dx
(
csc x

)
= − csc x cot x

The proofs of these derivatives have been presented or left as exercises. To
remember the above, it may be helpful to keep in mind that the derivatives of
the trigonometric functions that start with “c” have a minus sign in them.

Example 2.4.7 Exploring alternate derivative methods

In Example 2.4.5 the derivative of f(x) =
5x2

sin x
was found using the Quotient

Rule. Rewriting f as f(x) = 5x2 csc x, find f ′ using Theorem 2.4.3 and verify the
two answers are the same.

SOLUTION We found f ′(x) =
10x sin x− 5x2 cos x

sin2 x
in Example 2.4.5.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2

d
dx

(csc x)− csc x
d
dx

(5x2)

= 5x2(− csc x cot x) + 10x csc x (now rewrite trig functions)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Notes:
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2.4 The Product and Quotient Rules

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule is
fine. Work to “simplify” your results into a form that is most readable and useful
to you.

When we stated the Power Rule in Section 2.3 we claimed that it worked
for all n ∈ R but only provided the proof for non‐negative integers. The next
example uses the Quotient Rule to provide justification of the Power Rule for
n ∈ Z.

Example 2.4.8 Using the Quotient Rule to expand the Power Rule
Find the derivatives of the following functions.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SOLUTION We employ the Quotient Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The derivative of y =
1
xn

turned out to be rather nice. It gets better. Consid‐
er:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 2.4.8)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

Thus, for all n ∈ Z, we can officially apply the Power Rule: multiply by the power,
then subtract 1 from the power.

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend‐
ing on how the function is treated. One of the beautiful things about calculus

Notes:
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is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivative. We demonstrate this concept in an example.

Example 2.4.9 Exploring alternate derivative methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the Quotient Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SOLUTION

1. Applying the Quotient Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

2. By rewriting f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule to see

f ′(x) = 1− 1
x2
,

the same result as before.

Example 2.4.9 demonstrates three methods of finding f ′. It is difficult to
argue for a “best method” as all three gave the same result without too much

Notes:
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difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: simplify the answer
to a form that seems “simple” and easy to interpret. They are equal; they are all
correct. The most appropriate form of f ′ depends on what we need to do with
the function next. For later problems it will be important for us to determine the
most appropriate form to use and to move flexibly between the different forms.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo‐
rize the derivatives of a certain set of functions, such as “the derivative of sin x
is cos x.” The Sum/Difference, Constant Multiple, Power, Product and Quotient
Rules show us how to find the derivatives of certain combinations of these func‐
tions. The next section shows how to find the derivatives when we compose
these functions together.

Notes:
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx

(
x2 sin x

)
= 2x cos x.

2. T/F: The Quotient Rule states that d
dx

(
x2

sin x

)
=

2x
cos x

.

3. T/F: The derivatives of the trigonometric functions that
start with “c” have minus signs in them.

4. What derivative rule is used to extend the Power Rule to
include negative integer exponents?

5. T/F: Regardless of the function, there is always exactly one
right way of computing its derivative.

6. In your own words, explain what it means to make your
answers “clear.”

Problems
In Exercises 7–8, use the Quotient Rule to verify these deriva‐
tives.

7. d
dx

(cot x) = − csc2 x

8. d
dx

(csc x) = − csc x cot x

In Exercises 9–12:
(a) Use the Product Rule to differentiate the function.
(b) Manipulate the function algebraically and differentiate

without the Product Rule.
(c) Show that the answers from (a) and (b) are equivalent.

9. f(x) = x(x2 + 3x)
10. g(x) = 2x2(5x3)
11. h(s) = (2s− 1)(s+ 4)
12. f(x) = (x2 + 5)(3− x3)

In Exercises 13–16:
(a) Use the Quotient Rule to differentiate the function.
(b) Manipulate the function algebraically and differentiate

without the Quotient Rule.
(c) Show that the answers from (a) and (b) are equivalent.

13. f(x) = x2 + 3
x

14. g(x) = x3 − 2x2

2x2

15. h(s) = 3
4s3

16. f(t) = t2 − 1
t+ 1

In Exercises 17–42, compute the derivative of the given func‐
tion.

17. f(x) = x sin x

18. f(t) = 1
t2
(csc t− 4)

19. H(y) = (y5 − 2y3)(7y2 + y− 8)
20. F(y) = 3√y2(y2 + 9y)

21. g(x) = x+ 7
x− 5

22. y =
√
x

x+ 4

23. g(x) = x√
x+ 4

24. g(t) = t5

cos t− 2t2
25. h(x) = cot x− ex

26. h(t) = 7t2 + 6t− 2

27. f(x) = x4 + 2x3

x+ 2

28. f(x) = x2 −
√
x

x3

29. y =
(

1
x3

+
5
x4

)
(2x3 − x5)

30. g(x) = 1
1+ x+ x2 + x3

31. p(x) = 1+ 1
x
+

1
x2

+
1
x3

32. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

33. f(t) = t5(sec t+ et)

34. f(x) = sin x
cos x+ 3

35. g(x) = e2
(
sin(π/4)− 1

)
36. g(t) = 4t3et − sin t cos t
37. f(y) = y(2y3 − 5y− 1)(6y2 + 7)
38. F(x) = (8x− 1)(x2 + 4x+ 7)(x3 − 5)

39. h(t) = t2 sin t+ 3
t2 cos t+ 2

40. f(x) = x2ex tan x
41. g(x) = 2x sin x sec x
42. f(x) = x ln x

In Exercises 43–46, find the equations of the tangent line to
the graph of g at the indicated point.

43. g(s) = es(s2 + 2) at (0, 2).
44. g(t) = t sin t at ( 3π2 ,−

3π
2 )

45. g(x) = x2

x− 1
at (2, 4)

46. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 47–50, find the x‐values where the graph of the
function has a horizontal tangent line.

47. f(x) = 6x2 − 18x− 24
48. f(x) = x sin x on [−1, 1]

49. f(x) = x
x+ 1
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50. f(x) = x2

x+ 1
In Exercises 51–54, find the requested derivative.

51. f(x) = x sin x; find f ′′(x).
52. f(x) = x sin x; find f (4)(x).
53. f(x) = csc x; find f ′′(x).
54. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

In Exercises 55–60, f and g are differentiable functions such
that f(2) = 3, f ′(2) = −1, g(2) = −5, and g′(2) = 2. Evalu‐
ate the expressions.

55. (f+ g)′(2)
56. (f− g)′(2)
57. (4f)′(2)
58. (f · g)′(2)

59.
(

f
g

)′

(2)

60.
(

g
f+ g

)′

(2)

61. If f and g are functions whose graphs are shown, evaluate
the expressions.

−2 −1 1 2 3 4

−2

−1

1

2

3

4

g f

x

y

(a) (fg)′(−1) (b) (f/g)′(−1)
(c) (fg)′(3) (d) (g/f)′(3)
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Chapter 2 Derivatives

2.5 The Chain Rule
We have covered almost all of the derivative rules that deal with combinations
of two (or more) functions. The operations of addition, subtraction, multiplica‐
tion (including by a constant) and division led to the Sum and Difference rules,
the Constant Multiple Rule, the Power Rule, the Product Rule and the Quotient
Rule. To complete the list of differentiation rules, we look at the last way two (or
more) functions can be combined: the process of composition (i.e. one function
“inside” another).

One example of a composition of functions is f(x) = cos(x2). We currently
do not know how to compute this derivative. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivative of cos x
and 2x as the derivative of x2. However, this is not the case; f ′(x) ≠ − sin(2x).
In Example 2.5.4 we’ll see the correct answer, which employs the new rule this
section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func‐
tions. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differentiation rule, we note that the rule extends to
multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 2.5.1 Exploring similar derivatives
Find the derivatives of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different functions and an
uppercase F.)

SOLUTION In order to use the rules we already have, we must first ex‐
pand each function as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F1 ′(x) = −2+ 2x,
F2 ′(x) = −3+ 6x− 3x2 and
F3 ′(x) = −4+ 12x− 12x2 + 4x3.

An interesting fact is that these can be rewritten as

F1 ′(x) = −2(1− x),
F2 ′(x) = −3(1− x)2 and
F3 ′(x) = −4(1− x)3.

Notes:
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2.5 The Chain Rule

A pattern might jump out at you. Recognize that each of these functions is a
composition, letting g(x) = 1− x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example after giving the formal statements of the
Chain Rule; for now, we are just illustrating a pattern.

Theorem 2.5.1 The Chain Rule
Let y = f(u) be a differentiable function of u and let u = g(x) be a
differentiable function of x. Then y = f(g(x)) is a differentiable function
of x, and

y ′ = f ′(g(x)) · g ′(x).

We can think of this as taking the derivative of the outer function evaluated
at the inner function times the derivative of the inner function. To help under‐
stand the Chain Rule, we return to Example 2.5.1.

Example 2.5.2 Using the Chain Rule
Use the Chain Rule to find the derivatives of the functions given in Example 2.5.1.

SOLUTION Example 2.5.1 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confusion, we
ignore most of the subscripts here.
F1(x) = (1− x)2 :

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means substitute g(x) for x in the

equation for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:
Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have

f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

Notes:
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Chapter 2 Derivatives

F3(x) = (1− x)4:
Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus

f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 2.5.2 demonstrated a particular pattern: when f(x) = xn and y =
f(g(x)), then y ′ = n · (g(x))n−1 ·g ′(x). This is called the Generalized Power Rule.

Theorem 2.5.2 Generalized Power Rule
Let g(x) be a differentiable function. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the derivative of functions like y = (3x2 − 5x+
7 + sin x)20. While it may look intimidating, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · d
dx

(3x2 − 5x+ 7+ sin x)

= 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivative‐taking process step‐by‐step. In the example just given,
first multiply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

Watch the video:
Chain Rule for Finding Derivatives at
https://youtu.be/6kScLENCXLg

We now consider more examples that employ the Chain Rule.

Notes:
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2.5 The Chain Rule

Example 2.5.3 Using the Chain Rule
Find the derivatives of the following functions:

1. y = sin 2x 2. y = ln(4x3 − 2x2) 3. y = e−x2

SOLUTION

1. Consider y = sin 2x. Recognize that this is a composition of functions,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · d
dx

(2x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composition of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· d
dx

(4x3 − 2x2)

=
1

4x3 − 2x2
· (12x2 − 4x)

=
12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composition of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = ex
2
· d
dx

(x2) = e−x2 · (−2x) = (−2x)e−x2 .

Example 2.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equation of the line tangent to the graph of f at x = 1.

SOLUTION The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

Notes:
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Chapter 2 Derivatives

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equation of the tangent line is approximately

−2 2

−1

−0.5

0.5

1

x

y

Figure 2.5.1: f(x) = cos x2 sketched
along with its tangent line at x = 1.

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.1.

The Chain Rule is used often in taking derivatives. Because of this, one can
become familiar with the basic process and learn patterns that facilitate finding
derivatives quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· d
dx

(anything) =
d
dx (anything)
anything

.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the nu‐
merator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In gen‐
eral, instead of writing “anything”, we use u as a generic function of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa‐
miliar functions.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjunctionwith any of the other
rules we have already learned. We practice this next.

Notes:
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2.5 The Chain Rule

Example 2.5.5 Using the Product, Quotient and Chain Rules
Find the derivatives of the following functions.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SOLUTION

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step‐by‐
step.

f ′(x) = x5 · d
dx

(sin 2x3) +
d
dx

(x5) · sin 2x3

= x5 · [cos 2x3 · d
dx

(2x3)] + 5x4 · sin 2x3

= x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the Quotient Rule along with the Chain Rule. Again, pro‐
ceed step‐by‐step.

f ′(x) =
e−x2 · d

dx (5x
3)− 5x3 d

dxe
−x2

(e−x2)2

=
e−x2 · 15x2 − 5x3 · e−x2 · d

dx (−x2)
(e−x2)2

=
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2

=
e−x2(10x4 + 15x2

)
e−2x2

= ex
2(
10x4 + 15x2

)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

Notes:

127



Chapter 2 Derivatives

We can also employ the Chain Rule itself several times, as shown in the next
example.

Example 2.5.6 Using the Chain Rule multiple times
Find the derivative of y = tan5(6x3 − 7x).

SOLUTION Recognize that we have the function g(x) = tan(6x3 − 7x)
“inside” the function f(x) = x5; that is, we have y =

(
tan(6x3 − 7x)

)5. We use
the Chain Rule multiple times, beginning with the Generalized Power Rule:

y ′ = 5
(
tan(6x3 − 7x)

)4 · d
dx

tan(6x3 − 7x)

= 5 tan4(6x3 − 7x) · sec2(6x3 − 7x) · d
dx

(6x3 − 7x)

= 5 tan4(6x3 − 7x) · sec2(6x3 − 7x) · (18x2 − 7)
= 5(18x2 − 7) tan4(6x3 − 7x) sec2(6x3 − 7x)

This function is frankly a ridiculous function, possessing no real practical val‐
ue. It is very difficult to graph, as the tangent function has many vertical asymp‐
totes and 6x3 − 7x grows so very fast. The important thing to learn from this is
that the derivative can be found. In fact, it is not “hard;” one must take several
small steps and be careful to keep track of how to apply each of these steps.

It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every‐
thing down into smaller pieces.

Example 2.5.7 Using the Product, Quotient and Chain Rules

Find the derivative of f(x) =
x cos(x−2)− sin2(e4x)

ln x2
.

SOLUTION This function likely has no practical use outside of demon‐
strating derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the Chain Rule three times.
f ′(x) =

(ln x2)[−x(sin x−2)(−2x−3) + 1 · (cos(x−2)) − 2 sin e4x cos e4x · (4e4x)] − 2x
x2

· [x cos(x−2) − sin2(e4x)]
(ln x2)2

.

The reader is highly encouraged to look at each term and recognize why it is
there. This example demonstrates that derivatives can be computed systemati‐
cally, no matter how arbitrarily complicated the function is.

Notes:
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2.5 The Chain Rule

Alternate Chain Rule Notation
It is instructive to understand what the Chain Rule “looks like” using “ dydx” no‐
tation instead of y ′ notation. Suppose that y = f(u) is a function of u, where
u = g(x) is a function of x, as stated in Theorem 2.5.1. Then, through the com‐
position f ◦ g, we can think of y as a function of x, as y = f(g(x)). Thus the
derivative of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesting progression of notation:

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fractional” notation for the derivative)

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms divide out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not dividing these terms; the derivative
notation of dy

dx is one symbol. It is equally important to realize that this notation
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with multiple variables. For instance,

dy
dt

=
dy
d□ · d□

d△
· d△
dt

.

where□ and△ are any variables you’d like to use.

x

u

dy
du

= 3

du
dx

= 2
dy
dx

= 6

y

Figure 2.5.2: A series of gears to
demonstrate the Chain Rule. Note how
dy
dx = dy

du · du
dx

One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure 2.5.2. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolution is twice as fast
as the rate at which the x gear makes a revolution. Using the terminology of
calculus, the rate of u‐change, with respect to x, is du

dx = 2.
Likewise, every revolution of u causes 3 revolutions of y: dy

du = 3. How does
y change with respect to x? For each revolution of x, y revolves 6 times; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

Notes:
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Chapter 2 Derivatives

It is difficult to overstate the importance of the Chain Rule. So often the
functions thatwe dealwith are compositions of twoormore functions, requiring
us to use this rule to compute derivatives. It is often used in practicewhen actual
functions are unknown. Rather, through measurement, we can calculate dy

du and
du
dx . With our knowledge of the Chain Rule, finding dy

dx is straightforward.
In the next section, we use the Chain Rule to justify another differentiation

technique. There are many curves that we can draw in the plane that fail the
“vertical line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay still be interested in finding slopes of tangent lines to the circle at
various points. The next section shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.

Notes:
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Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva‐

tive of a composition of functions.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx

(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx

(
ex

2)
= ex

2
.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. T/F: Taking the derivative of f(x) = x2 sin(5x) requires the
use of both the Product and Chain Rules.

Problems
In Exercises 7–46, compute the derivative of the given func‐
tion.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
x+ 1

x

)4
12. p(x) =

(
x2 − 1

x2

)6

13. f(x) = cos(3x)
14. g(x) = tan(5x)
15. h(θ) = tan(θ2 + 4θ)
16. g(t) = sin(t5 + 1

t )

17. h(t) = sin4(2t)
18. p(t) = cos3(t2 + 3t+ 1)
19. g(x) = tan2 x− tan(x2)

20. w(x) = sec(ex
3
)

21. f(x) = ln(cos x)
22. f(x) = ln(x2)
23. f(x) = 2 ln(x)
24. g(t) = 152

25. r(x) =
√
4x− 3
x2

26. f(x) = (3x2 − 5)4

(2x3 − 1)2

27. h(x) = [(2x+ 1)10 + 1]10

28. f(t) =

[(
1+ 1

t

)−1

+ 1

]−1

29. F(x) = 2x(2x+ 1)2(2x+ 3)3

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. g(t) = cos( 1t )e
5t2

34. f(x) = sin(4x+1)
(5x−9)3

35. f(x) = (4x+ 1)2

tan(5x)

36. a(t) = 7t3etan t2

37. y =
√

sin(cos2 x)

38. k(x) = cos(x sin x3)

39. f(x) =
√
x+ 1√

x

40. f(x) = 3√x+ x2/3

41. f(t) =
√
1− t2

42. g(t) =
√
t sin t

43. h(x) = x1.5

44. f(x) = xπ + x1.9 + π1.9

45. g(x) = x+ 7√
x

46. f(t) = 5√t(sec t+ et)

47. If k(x) = f(g(x)) with f(2) = −4, g(2) = 2, f ′(2) = 3,
and g′(2) = 5. Find k′(2).

48. Suppose r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3,
h′(1) = 3, g′(2) = 5, and f′(3) = 6. Find r′(1).

49. If f and g are functions whose graphs are shown, evaluate
the expressions.

−2 −1 1 2 3 4

−3

−2

−1

1

2

3

4

g f

x

y

(a) (f ◦ g)′(−1) (b) (g ◦ f)′(0)
(c) (g ◦ g)′(−1) (d) (f ◦ f)′(4)
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50. x f(x) f ′(x) g(x) g′(x)

1 4 5 4 5
4 0 7 1 1

2
6 6 4 6 3

Use the given table of values for f, g, f ′, and g′ to find
(a) (f ◦ g)′(6)
(b) (g ◦ f)′(1)
(c) (g ◦ g)′(6)
(d) (f ◦ f)′(1)

In Exercises 51–54, find the equations of tangent line to the
graph of the function at the given point. Note: the functions
here are the same as in Exercises 7–10.

51. f(x) = (4x3 − x)10 at x = 0
52. f(t) = (3t− 2)5 at t = 1
53. g(θ) = (sin θ + cos θ)3 at θ = π/2

54. h(t) = e3t
2+t−1 at t = −1

55. Compute d
dx

(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ab) = ln a+ ln b,

then taking the derivative.

56. Compute d
dx

(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ap) = p ln a, then

taking the derivative.

57. Use the Chain Rule to prove the following:
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

58. Use the Chain Rule and Product Rule to give an alterna‐
tive proof of the Quotient Rule. (Hint: write f(x)/g(x) as
f(x) · [g(x)]−1).

59. Use the Chain Rule to express the second derivative of
f(g(x)) in terms of first and second derivatives of f and g.

Review

60. The “wind chill factor” is a measurement of how cold it
“feels” during cold, windy weather. Let W(w) be the wind
chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.
(a) What are the units ofW ′(w)?
(b) What would you expect the sign ofW ′(10) to be?

61. Find the derivative of f(x) = x2ex cot x
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2.6 Implicit Differentiation

2.6 Implicit Differentiation

In the previous sections we learned to find the derivative, dy
dx , or y

′, when y is
given explicitly as a function of x. That is, if we know y = f(x) for some function
f, we can find y ′. For example, given y = 3x2 − 7, we can easily find y ′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

Sometimes the relationship between y and x is not explicit; rather, it is im‐
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relationship between x and y; if we know x, we could figure out y. Can we still
find y ′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differentiate to get y ′ = 2x.

Sometimes the implicit relationship between x and y is complicated. Sup‐
pose we are given sin(y) + y3 = 6 − x3. A graph of this equation is given in
Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary functions. The surprising thing is, however, that we can still find y ′
via a process known as implicit differentiation.

−2 2

−2

2

x

y

Figure 2.6.1: A graph of the equation
sin(y) + y3 = 6− x3.

Implicit differentiation is a technique based on the Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be functions of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y)
)
= f ′(y) · y ′, or

d
dx

(
f(y)
)
= f ′(y) · dy

dx
. (2.6.1)

These equations look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

Watch the video:
Showing explicit and implicit differentiation give
same result at
https://youtu.be/2CsQ_l1S2_Y

We demonstrate this process in the following example.

Notes:
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Chapter 2 Derivatives

Example 2.6.1 Using Implicit Differentiation
Find y ′ given that sin(y) + y3 = 6− x3.

SOLUTION We start by taking the derivative of both sides (thus main‐
taining the equality). We have:

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

The right hand side is easy; it returns−3x2.
The left hand side requires more consideration. We take the derivative term‐

by‐term. Using the technique derived from Equation (2.6.1) above, we can see
that d

dx

(
sin y

)
= cos y · y ′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y ′.

Putting this together with the right hand side, we have

cos(y)y ′ + 3y2y ′ = −3x2.

Now solve for y ′.
cos(y)y ′ + 3y2y ′ = −3x2.(
cos y+ 3y2

)
y ′ = −3x2

y ′ =
−3x2

cos y+ 3y2

This equation for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com‐
puting the corresponding y value. With an implicit function, one often has to
find x and y values at the same time that satisfy the equation. It is much easi‐
er to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the equation sin y+ y3 = 6− x3. Plugging in 0 for y, we see the left hand side is
0. Setting x = 3

√
6, we see the right hand side is also 0; the equation is satisfied.
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2.6 Implicit Differentiation

The following example finds an equation of the tangent line to this equation at
this point.

Example 2.6.2 Using Implicit Differentiation to find a tangent line
Find the equation of the line tangent to the implicitly defined curve sin y+ y3 =
6− x3 at the point ( 3

√
6, 0).

SOLUTION In Example 2.6.1 we found that

y ′ =
−3x2

cos y+ 3y2
.

We find the slope of the tangent line at the point ( 3
√
6, 0) by substituting 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y ′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1
≈ −9.91.
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Figure 2.6.2: The equation sin y + y3 =
6 − x3 and its tangent line at the point
( 3√6, 0).

Therefore an equation of the tangent line to the implicitly defined curve
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differentiation. For the steps be‐
low assume y is a function of x.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply ex‐
cept that, because of the Chain Rule, we need to multiply each term by
y ′.

2. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y ′; solve for y ′ by dividing.

Practical Note: When working by hand, it may be beneficial to use the sym‐
bol dy

dx instead of y
′, as the latter can be easily confused for y or y1.

Notes:
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Chapter 2 Derivatives

Example 2.6.3 Using Implicit Differentiation
Given the implicitly defined function y3 + x2y4 = 1+ 2x, find y ′.

SOLUTION Wewill take the implicit derivatives term by term. Using the
Chain Rule the derivative of y3 is 3y2y ′.

The second term, x2y4 is a little more work. It requires the Product Rule as
it is the product of two functions of x: x2 and y4. We see that

d
dx

(x2y4) is

x2 · d
dx

(y4) +
d
dx

(x2) · y4

x2 · (4y3y′) + 2x · y4

The first part of this expression requires a y ′ because we are taking the deriva‐
tive of a y term. The second part does not require it because we are taking the
derivative of x2.

The derivative of the right hand side of the equation is found to be 2. In all,
we get:

3y2y ′ + 4x2y3y ′ + 2xy4 = 2.

Move terms around so that the left side consists only of the y ′ terms and the
right side consists of all the other terms:

3y2y ′ + 4x2y3y ′ = 2− 2xy4.

Factor out y ′ from the left side and solve to get

y ′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equation of a tangent line
to this curve at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this curve. At this point, y ′ = 2/3. So the equation of the tangent
line is y = 2/3(x − 0) + 1. The equation and its tangent line are graphed in
Figure 2.6.3.

5 10

−10

−5

x

y

Figure 2.6.3: A graph of the equation
y3 + x2y4 = 1+ 2x along with its tangent
line at the point (0, 1).

Notice how our curve looks much different than other functions we have
worked with up to this point. Such curves are important in many areas of math‐
ematics, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit Differentiation
Given the implicitly defined curve sin(x2y2) + y3 = x+ y, find y ′.

SOLUTION Differentiating term by term, we find the most difficulty in

Notes:
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2.6 Implicit Differentiation

the first term. It requires both the Chain and Product Rules.

d
dx
(
sin(x2y2)

)
= cos(x2y2) · d

dx
(x2y2)

= cos(x2y2) ·
(
x2

d
dx

(y2) +
d
dx

(x2) · y2
)

= cos(x2y2) · (x2 · 2yy ′ + 2xy2)
= 2(x2yy ′ + xy2) cos(x2y2).

We leave the derivatives of the other terms to the reader. After taking the
derivatives of both sides, we have

2(x2yy ′ + xy2) cos(x2y2) + 3y2y ′ = 1+ y ′.
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(a)
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(b)

Figure 2.6.4: A graph of the equation
sin(x2y2) + y3 = x + y and certain
tangent lines.

We now have to be careful to properly solve for y ′, particularly because of
the product on the left. It is best to multiply out the product. Doing this, we get

2x2y cos(x2y2)y ′ + 2xy2 cos(x2y2) + 3y2y ′ = 1+ y ′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y ′ + 3y2y ′ − y ′ = 1− 2xy2 cos(x2y2).

Then we can solve for y ′ to get

y ′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

A graph of this implicit equation is given in Figure 2.6.4(a). It is easy to verify
that the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y ′.
At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the function in Figure 2.6.4(b).

Quite a few “famous” curves have equations that are given implicitly. We can
use implicit differentiation to find the slope at various points on those curves.
We investigate two such curves in the next examples.

Notes:
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Chapter 2 Derivatives

Example 2.6.5 Finding slopes of tangent lines to a circle
Find the slope of the tangent line to the circle x2 + y2 = 1 at the point ( 12 ,

√
3
2 ).

SOLUTION Taking derivatives, we get 2x+2yy ′ = 0. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y ′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

In Figure 2.6.5, we see a graph of the circle and its tangent line at the point
(1/2,

√
3/2) along with a thin dashed line from the origin that is perpendicular

to the tangent line. (It turns out that all normal lines to a circle pass through the
center of the circle.)

−1 1

−1

1 (1/2,
√
3/2)

x

y

Figure 2.6.5: The unit circle with its tan‐
gent line at (1/2,

√
3/2).

This section has shown how to find the derivatives of implicitly defined func‐
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu‐
lar” differentiation.

Implicit Differentiation and the Second Derivative
We can use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find dy

dx , then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.6 Finding the second derivative

Given x2 + y2 = 1, find
d2y
dx2

= y ′′.

SOLUTION We found that y ′ = dy
dx = −x/y in Example 2.6.5. To find y ′′,

we apply implicit differentiation to y ′.

y ′′ =
d
dx
(
y ′
)

Notes:
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2.6 Implicit Differentiation

=
d
dx

(
−x
y

)
now use the Quotient Rule

= −y(1)− x(y ′)
y2

replace y ′ with−x/y

= −y− x(−x/y)
y2

= −y2 + x2

y3
, since we were given x2 + y2 = 1

= − 1
y3
.

We can see that y ′′ > 0 when y < 0 and y ′′ < 0 when y > 0. In Section 3.4,
we will see how this relates to the shape of the graph.

Implicit differentiation proves to be useful as it allows us to find the instan‐
taneous rates of change of a variety of functions. We close with a small gallery
of “interesting” and “famous” curves along with the implicit equations that pro‐
duce them.
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Astroid
x2/3 + y2/3 = 1

Fattened circle
x2n + y2n = 1

Elliptic curve
y2 = x3 + ax+ b
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Cassini ovals
((x− a)2 + y2)((x+ a)2 + y2) = b4

Devil’s curve
y2(y2 − a2) = x2(x2 − b2)

Folium of Descartes
x3 + y3 = 3axy
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Chapter 2 Derivatives

The astroid and folium of Descartes also appear in Section 10.2. Other im‐
portant implicit curves are the conic sections, which appear in Section 10.0. Also,
the lemniscate, cardioid, and limaçon seen in Section 10.4 have particularly nice
implicit representations.

In this chapter we have defined the derivative, given rules to facilitate its
computation, and given the derivatives of a number of standard functions. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.6.1 Glossary of Derivatives of Elementary Functions
Let u and v be differentiable functions, and let c and n be real numbers,
n ̸= 0.
1. d

dx
(
cu
)
= cu′ 2. d

dx
(
u± v

)
= u′ ± v′

3. d
dx
(
u · v

)
= uv′ + u′v 4. d

dx
( u
v

)
= u′v−uv′

v2

5. d
dx
(
u(v)

)
= u′(v)v′ 6. d

dx
(
xn
)
= nxn−1

7. d
dx
(
c
)
= 0 8. d

dx
(
x
)
= 1

9. d
dx
(
ln x
)
= 1

x 10. d
dx
(
ex
)
= ex

11. d
dx
(
sin x

)
= cos x 12. d

dx
(
cos x

)
= − sin x

13. d
dx
(
tan x

)
= sec2 x 14. d

dx
(
cot x

)
= − csc2 x

15. d
dx
(
sec x

)
= sec x tan x 16. d

dx
(
csc x

)
= − csc x cot x
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Exercises 2.6
Terms and Concepts
1. In your ownwords, explain the difference between implicit

functions and explicit functions.
2. Implicit differentiation is based on what other differentia‐

tion rule?
3. T/F: Implicit differentiation can be used to find the deriva‐

tive of y =
√
x.

4. T/F: Implicit differentiation can be used to find the deriva‐
tive of y = x3/4.

Problems
In Exercises 5–22, find dy

dx
using implicit differentiation.

5. x4 + y2 + y = 7
6. x2/5 + y2/5 = 1
7. cos x+ sin y = 1

8. x
y
= 10

9. y
x
= 10

10. x2e2 + ey = 5
11. x2 tan y = 50
12. (3x2 + 2y3)4 = 2
13. (y2 + 2y− x)2 = 200

14. x2 + y
x+ y2

= 17

15. sin(x) + y
cos(y) + x

= 1

16. ln(x2 + y2) = e
17. ln(x2 + xy+ y2) = 1
18. xex = yey

19. y sin(x3) = x sin(y3)
20. √xy = 1+ x2y
21. x2y− y2x = 1
22. x2 + y2 + xy = 7

In Exercises 23–28, find the equation of the tangent line to the
graph of the implicitly defined function at the indicated points.
As a visual aid, each function is graphed.

23. x2/5 + y2/5 = 1
(a) At (1, 0).
(b) At (0.1, 0.281) (which does not exactly lie on the

curve, but is very close).
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24. x4 + y4 = 1
(a) At (1, 0).
(b) At (

√
0.6,

√
0.8).

(c) At (0, 1).
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25. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).
(b) At (2,− 4√108).
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26. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.
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27. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
4+ 3

√
3

2
,
3
2

)
.
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28. x2 + 2xy− y2 + x = 2
(a) At (−2, 0).
(b) At (1, 2).
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(1, 2)

x

y

In Exercises 29–32, an implicitly defined function is given. Find
d2y
dx2

. Note: these are the same problems used in Exercises 5–8.

29. x4 + y2 + y = 7

30. x2/5 + y2/5 = 1

31. cos x+ sin y = 1

32. x
y
= 10

33. Show that dy
dx

is the same for each of the following implic‐
itly defined functions.
(a) xy = 1
(b) x2y2 = 1
(c) sin(xy) = 1
(d) ln(xy) = 1
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3: THE GRAPHICAL BEHAVIOR
OF FUNCTIONS

Our study of limits led to continuous functions, which is a certain class of func‐
tions that behave in a particularly nice way. Limits then gave us an even nicer
class of functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor‐
mation that continuous and differentiable functions provide.

3.1 Extreme Values Note: The extreme values of a func‐
tion are “y” values, values the func‐
tion attains, not the input values.Given any quantity described by a function, we are often interested in the largest

and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 3.1.1 Extreme Values
Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.
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Figure 3.1.1: Graphs of functions with
and without extreme values.

Consider Figure 3.1.1. The function displayed in (a) has a maximum, but
no minimum, as the interval over which the function is defined is open. In (b),
the function has a minimum, but no maximum; there is a discontinuity in the
“natural” place for the maximum to occur. Finally, the function shown in (c) has

Notes:
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Chapter 3 The Graphical Behavior of Functions

both a maximum and a minimum; note that the function is continuous and the
interval on which it is defined is closed.

It is possible for discontinuous functions defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al‐
ways have a maximum and minimum value.

Theorem 3.1.1 The Extreme Value Theorem
Let f be a continuous function defined on a finite closed interval I. Then
f has both a maximum and minimum value on I.

This theoremstates that fhas extremevalues, but it does not offer any advice
about how/where to find these values. The process can seem to be fairly easy, as
the next example illustrates. After the example, we will draw on lessons learned
to form a more general and powerful method for finding extreme values.

Watch the video:
Finding Critical Numbers — Example 2 at
https://youtu.be/3-6bdDXzl9M

Example 3.1.1 Approximating extreme values
Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 3.1.2. Approxi‐
mate the extreme values of f.
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20

(5, 25)

(3,−27)

(−1,−11)

(0, 0)
x

y

Figure 3.1.2: A graph of f(x) = 2x3 − 9x2
as in Example 3.1.1.

SOLUTION The graph is drawn in such away to draw attention to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximation, we
approximate the extreme values to be 25 and−27.

Notice how the minimum value came at “the bottom of a valley,” and the
maximum value came at an endpoint. Also note that while 0 is not an extreme
value, it would be if we narrowed our interval to [−1, 4]. The idea that the point
(0, 0) is the location of an extreme value for some interval is important, leading
us to a definition.

Notes:
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3.1 Extreme Values

Definition 3.1.2 Relative Minimum and Relative Maximum
Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the min‐
imum value of f on that interval, then f(c) is a relative minimum
of f. We also say that f has a relative minimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maxi‐
mum value of f on that interval, then f(c) is a relative maximum
of f. We also say that f has a relative maximum at (c, f(c)).

The relative maximum and minimum values comprise the relative ex‐
trema of f.

Note: The terms local minimum, lo‐
cal maximum, and local extrema are
often used as synonyms for relative
minimum, relative maximum, and
relative extrema.

We briefly practice using these definitions.
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Figure 3.1.3: A graph of f(x) = (3x4 −
4x3 − 12x2 + 5)/5 as in Example 3.1.2.

Example 3.1.2 Approximating relative extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 3.1.3. Approximate
the relative extrema of f. At each of these points, evaluate f ′.

SOLUTION We still do not have the tools to exactly find the relative
extrema, but the graph does allow us to make reasonable approximations. It
seems f has relative minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relative maximum at the point (0, 1).

We approximate the relative minima to be 0 and−5.4; we approximate the
relative maximum to be 1.

It is straightforward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.
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Figure 3.1.4: A graph of f(x) = (x −
1)2/3 + 2 as in Example 3.1.3.

Example 3.1.3 Approximating relative extrema
Approximate the relative extrema of f(x) = (x−1)2/3+2, shown in Figure 3.1.4.
At each of these points, evaluate f ′.

SOLUTION The figure implies that f does not have any relative maxima,
but has a relative minimum at (1, 2). In fact, the graph suggests that not only
is this point a relative minimum, y = f(1) = 2 is the minimum value of the
function.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

Notes:
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Chapter 3 The Graphical Behavior of Functions

What can we learn from the previous two examples? We were able to vi‐
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading
to a definition and a theorem.

Definition 3.1.3 Critical Numbers and Critical Points
Let f be defined at c. The value c is a critical point (or critical number)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a critical number of f, then f(c) is a critical value of f.

Theorem 3.1.2 Fermat’s Theorem
Let a function f have a relative extrema at the point (c, f(c)). Then c is a
critical point of f.

It isn’t too hard to see why this should be true. If f ′ is defined at a relative
extreme, then the tangent line must be horizontal. Otherwise, we’d be able to
move along the graph in the direction given by the tangent line to get a more
extreme value.
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Figure 3.1.5: A graph of f(x) = x3 which
has a critical point of x = 0, but no
relative extrema.

Be careful to understand that this theorem states “All relative extrema occur
at critical points.” It does not say “All critical points produce relative extrema.”
For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is straightforward to
determine that x = 0 is a critical point of f. However, f has no relative extrema,
as illustrated in Figure 3.1.5.

Theorem3.1.1 states that a continuous functionon a closed intervalwill have
absolute extrema, that is, both an absolutemaximumand an absoluteminimum.
These extrema occur either at the endpoints or at critical points in the interval.
We combine these concepts to offer a strategy for finding extrema.

Notes:

146



3.1 Extreme Values

Key Idea 3.1.1 Finding Extrema on a Closed Interval
Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the critical points of f in (a, b).

3. Evaluate f at each critical point.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We practice these ideas in the next examples.

Example 3.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Fig‐
ure 3.1.6(a).

SOLUTION We follow the steps outlined in Key Idea 3.1.1. We first eval‐
uate f at the endpoints:

1 2 3

20

40

x

y

(a)
x f(x)

0 0
1 −7
3 45

(b)

Figure 3.1.6: A graph and table of ex‐
treme values of f(x) = 2x3 + 3x2 − 12x
on [0, 3] as in Example 3.1.4.

f(0) = 2(0)3 + 3(0)2 − 12(0) = 0 and f(3) = 2(3)3 + 3(3)2 − 12(3) = 45.

Next, we find the critical points of f on [0, 3]. We see that f ′(x) = 6x2+6x−12 =
6(x + 2)(x − 1); therefore the critical points of f are x = −2 and x = 1. Since
x = −2 does not lie in the interval [0, 3], we ignore it. Evaluating f at the only
critical point in our interval gives: f(1) = 2(1)3 + 3(1)2 − 12(1) = −7.

The table in Figure 3.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed
an analytic algorithm and did not depend on any visualization. Figure 3.1.6(a)
shows f and we can confirm our answer, but it is important to understand that
these answers can be found without graphical assistance.

We practice again.
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Chapter 3 The Graphical Behavior of Functions

Example 3.1.5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =

{
(x− 1)2 x ≤ 0
x+ 1 x > 0

.

x f(x)

−4 25
0 1
2 3
(a)

−4 −2 2

10

20

x

y

(b)

Figure 3.1.7: A table of extreme values
and graph of f(x) on [−4, 2] as in Exam‐
ple 3.1.5.

SOLUTION Although f is piecewise‐defined, it is still continuous, which
means that we can apply Key Idea 3.1.1. Evaluating f at the endpoints gives:

f(−4) = (−4− 1)2 = (−5)2 = 25 and f(2) = 2+ 1 = 3.

We now find the critical points of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =

{
2(x− 1) x < 0
1 x > 0

.

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivative of f does
not exist when x = 0. (From the left, the derivative approaches −2; from the
right the derivative is 1.) Thus one critical point of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0. (We may be tempted to say that f ′(x) = 0 when x = 1. However,
this is nonsensical, for we only consider f ′(x) = 2(x− 1)when x < 0, so we will
ignore a solution that says x = 1.)

So we have three important x values to consider: x = −4, 2 and 0. We have
already evaluated the first two, and f(0) = (0 − 1)2 = (−1)2 = 1. Collecting
these values into Figure 3.1.7(a), we see that the absolute minimum of f is 1 and
the absolute maximum of f is 25. Our answer is confirmed by the graph of f in
Figure 3.1.7(b).

x f(x)

−2 −0.65
−
√
π −1

0 1√
π −1
2 −0.65

(a)

−2 −1 1 2

−1

−0.5

0.5

1

x

y

(b)

Figure 3.1.8: A table of extreme values
and graph of f(x) = cos(x2) on [−2, 2] in
Example 3.1.6.

Example 3.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2].

SOLUTION We again use Key Idea 3.1.1. Evaluating f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the critical
points of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the critical points of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t is a integer multiple of π. Thus sin(x2) = 0 when x2 is an integer multiple
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3.1 Extreme Values

of π, and sin(x2) = 0 when x = 0,±
√
π,±

√
2π, . . . . The only values to fall in

the given interval of [−2, 2] are 0 and±
√
π, approximately±1.77.

We again construct a table of important values in Figure 3.1.8(a). In this
example we have 5 values to consider: x = 0,±2,±

√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 3.1.8(b) confirms our results.

We consider one more example.

−1 1

1

x

y

(a)
x f(x)

−1 0
0 1
1 0
(b)

Figure 3.1.9: A graph and table of ex‐
trema of f(x) =

√
1− x2 on [−1, 1] as in

Example 3.1.7.

Example 3.1.7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2.

SOLUTION A closed interval is not given, so we find the extreme values
of f on its domain. This f is defined whenever 1 − x2 ≥ 0; thus the domain of f
is [−1, 1]. Evaluating f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The critical points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straightforward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.1.9(b). The maximum
value is 1, and the minimum value is 0.

Note: We implicitly found the deriv‐
ative of x2 + y2 = 1, the unit circle,
in Example 2.6.5 as dy

dx = −x/y. In
Example 3.1.7, half of the unit circle
is given as y = f(x) =

√
1− x2.

We found f ′(x) = −x√
1−x2 . Recog‐

nize that the denominator of this
fraction is y; that is, we again found
f ′(x) = dy

dx = −x/y.

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next section, we further our study of the informationwe can
glean from “nice” functions with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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Exercises 3.1
Terms and Concepts

1. Describe what an “extreme value” of a function is in your
own words.

2. Sketch the graph of a function f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relative
maxima in your own words.

4. Sketch the graph of a function f where f has a relative max‐
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a critical value of a function f, then f has either a
relative maximum or relative minimum at x = c.

6. Fill in the blanks: The critical points of a function f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7–8, identify each of themarked points as being an
absolute maximum or minimum, a relative maximum or mini‐
mum, or none of the above. (A point could be more than one.)

7.

2 4 6

−2

2

A

D

B

C
E

F

G

x

y

8.
2 4

−2

2

A

B

C

D

E

x

y

In Exercises 9–16, evaluate f ′(x) at the points indicated in the
graph.

9. f(x) = 2
x2 + 1

−5 5

1

2
(0, 2)

x

y

10. f(x) = x2
√
6− x2

−2 2

2

4

6

(0, 0)

(2, 4
√
2)

x

y

11. f(x) = sin x

2 4 6

−1

1
(π/2, 1)

(3π/2,−1)

x

y

12. f(x) = x2
√
4− x

−2 2 4

5

10

(0, 0)

(
16
5 , 512

25
√

5

)

(4, 0)
x

y

13. f(x) =

{
x2 x ≤ 0
x5 x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)
x

y

14. f(x) =

{
x2 x ≤ 0
x x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)
x

y
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15. f(x) = (x− 2)2/3

x
+ 1

5 10

2

4

6

(2, 1)

(
6, 1 +

3√2
3

)

x

y

16. f(x) = 3√x4 − 2x2 + 1

−2 −1 1 2

1

2

3

(1, 0)(−1, 0)
x

y

In Exercises 17–26, find the extreme values of the function on
the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].
20. f(x) = x2

√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

27. (a) Sketch the graph of a function that has a local mini‐
mum at 3 and is differentiable at 3.

(b) Sketch the graph of a function that has a local mini‐
mum at 3 and is continuous but not differentiable at
3.

(c) Sketch the graph of a function that has a local mini‐
mum at 3 and is not continuous at 3.

28. Show that 4 is a critical number of f(x) = (x− 4)3 + 7 but
f does not have a relative extreme value at 4.

29. A cubic function is a polynomial of degree 3; that is, it has
the form ax3 + bx2 + cx+ d, where a ̸= 0.
(a) Show that a cubic function can have 2, 1, or 0 critical

numbers. Give examples and sketches to illustrate
the 3 possibilities.

(b) How many local extreme values can a cubic function
have?

30. Suppose that a and b are positive numbers. Find the ex‐
treme values of f(x) = xa(1− x)b on [0, 1].

Review

31. Find dy
dx

, where x2y− y2x = 1.

32. Find the equation of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

33. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Chapter 3 The Graphical Behavior of Functions

3.2 The Mean Value Theorem
We motivate this section with the following question: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, completing the
trip in two hours. Is there necessarily a moment during the trip when you are
going 50 miles per hour?

In answering this question, it is clear that the average speed for the entire
trip is 50mph (i.e. 100miles in 2 hours), but the question is whether or not your
instantaneous speed is ever exactly 50 mph. More simply, does your speedome‐
ter ever read exactly 50 mph? Figure 3.2.1 shows a graphical interpretation of
this question. The answer, under some very reasonable assumptions, is “yes.”

0 0.5 1 1.5 2
0

20

40

60

80

100

Time (hours)

Di
st
an

ce
(m

ile
s)

Figure 3.2.1: Distance traveled as a func‐
tion of time. Must there be a tangent
line parallel to the average slope?

Let’s now see why this situation is in a calculus text by translating it into
mathematical symbols.

First assume that the function y = f(t) gives the distance (in miles) traveled
from your home at time t (in hours) where 0 ≤ t ≤ 2. In particular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line (average velocity) con‐
necting the starting and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50mph.

The slope at any point on the graph itself (instantaneous velocity) is given
by the derivative f ′(t). So, since the answer to the question above is “yes,” this
means that at some time during the trip, the derivative takes on the value of 50
mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some time 0 ≤ c ≤ 2.

How about more generally? Given any function y = f(x) and a range a ≤
x ≤ b does the value of the derivative at some point between a and b have to
match the slope of the secant line connecting the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equation f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two functions in an example.

Example 3.2.1 Comparing average and instantaneous rates of change
Consider functions

−1 1

2

x

y

(a)

−1 1

0.5

1

x

y

(b)

Figure 3.2.2: A graph of f1(x) = 1/x2 and
f2(x) = |x| in Example 3.2.1.

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.2.2(a) and (b), respectively. Both
functions have a value of 1 at a and b. Therefore the slope of the secant line

Notes:

152



3.2 The Mean Value Theorem

connecting the end points is 0 in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1] such that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.

Sowhatwent “wrong”? Itmaynot be surprising to find that the discontinuity
of f1 and the corner of f2 play a role. If our functions had been continuous and
differentiable, would we have been able to find that special value c? This is our
motivation for the following theorem.

a c b

f(a)

f(b)

secant line

tangent line

x

y

Figure 3.2.3: A graph of illustrating the
Mean Value Theorem of Differentiation

Theorem 3.2.1 The Mean Value Theorem of Differentiation
Let y = f(x) be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the functions in Example 3.2.1 fail are indeed
that f1 has a discontinuity on the interval [−1, 1] and f2 is not differentiable at
the origin.

We will give a proof of the Mean Value Theorem below. To do so, we use
Rolle’s Theorem, stated here.

Theorem 3.2.2 Rolle’s Theorem
Let f be continuous on [a, b] and differentiable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

−1 1 2

−5

5

a bc
x

y

Figure 3.2.4: A graph of f(x) = x3−5x2+
3x + 5, where f(a) = f(b). Note the
existence of c, where a < c < b, where
f ′(c) = 0.

Consider Figure 3.2.4 where the graph of a function f is given, where f(a) =
f(b). It should make intuitive sense that if f is differentiable (and hence, continu‐
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a relative maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.
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Chapter 3 The Graphical Behavior of Functions

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differentiable on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.

Case 2: Nowassume that f is not constant on [a, b]. The ExtremeValue Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a critical point in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that the maximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 3.1.2, cmust be a critical point of f; since f is differentiable, we
have that f ′(c) = 0, completing the proof of the theorem. □

Example 3.2.2 Exactly One Root
Show that f(x) = 8x7 + x3 + 3x+ 2 has exactly one real root.

SOLUTION We’ll do this in two steps. The first step is to use the Inter‐
mediate Value Theorem to show that there is at least one root. The second step
is to use Rolle’s Theorem to show that there is at most one root. (Because f
is a polynomial, it is continuous and differentiable, so both of these theorems
apply.)

We can apply the Intermediate Value Theorem on the interval [−1, 0]. Since
f(−1) = −10 < 0 < f(0) = 2, the Intermediate Value Theorem tells us that
there is at least one place in [−1, 0] where f(x) = 0. This means that there is at
least one root, but there may be more in the interval (and there may be more
outside the interval where we haven’t even looked).

We will now use Rolle’s Theorem to show that f has at most one root. Sup‐
pose for this paragraph that f had two (or more) roots. Then by Rolle’s Theorem,
there is some c in between the roots so that 0 = f ′(c) = 56x6 + 3x2 + 3. But
this cannot happen, since f ′ is always at least 3.

Therefore, f has at most one root. Combining this with “there is at least
one root”, we see that f has exactly one root. (Notice that because both the
Intermediate Value Theorem and Rolle’s Theorem are existential theorems, we
don’t know what the root is, only that it must exist.)

We will now use Rolle’s Theorem to prove the Mean Value Theorem.
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3.2 The Mean Value Theorem

Proof of the Mean Value Theorem
Define the function

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differentiable on (a, b) and continuous on [a, b] since f is. We also
see that

g(b)− g(a) = f(b)− f(b)− f(a)
b− a

b− f(a) +
f(b)− f(a)

b− a
a

=
(
f(b)− f(a)

)
− f(b)− f(a)

b− a
(b− a) = 0

which shows that g(a) = g(b). We can then apply Rolle’s theorem to guarantee
the existence of c ∈ (a, b) such that g ′(c) = 0. But note that

0 = g ′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. □

Going back to the very beginning of the section, we see that the only as‐
sumption we would need about our distance function f(t) is that it be continu‐
ous and differentiable for t from 0 to 2 hours (both reasonable assumptions). By
the Mean Value Theorem, we are guaranteed a time during the trip where our
instantaneous speed is 50 mph. This fact is used in practice. Some law enforce‐
ment agencies monitor traffic speeds while in aircraft. They do not measure
speed with radar, but rather by timing individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver‐
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some time.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indication about how to find it. It
turns out that when we need theMean Value Theorem, existence is all we need.

Watch the video:
The Mean Value Theorem at
https://youtu.be/xYOrYLq3fE0
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Chapter 3 The Graphical Behavior of Functions

Example 3.2.3 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that satisfies the Mean
Value Theorem.

SOLUTION The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

Wewant to find c such that f ′(c) = 14. We find f ′(x) = 3x2+5. We set this
equal to 14 and solve for x.

f ′(x) = 14
3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

−3 −2 −1 1 2 3

−40

−20

20

40

x

y

Figure 3.2.5: Demonstrating the Mean
Value Theorem in Example 3.2.3.

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed
at least one. In Figure 3.2.5 f is graphed with a dashed line representing the
average rate of change; the lines tangent to f at x = ±

√
3 are also given. Note

how these lines are parallel (i.e., have the same slope) as the dashed line.

While the Mean Value Theorem has practical use (for instance, the speed
monitoring application mentioned before), it is mostly used to advance other
theory. We will use it in the next section to relate the shape of a graph to its
derivative.
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Exercises 3.2
Terms and Concepts
1. Explain in your own words what the Mean Value Theorem

states.
2. Explain in your own words what Rolle’s Theorem states.

Problems
In Exercises 3–10, a function f(x) and interval [a, b] are given.
Check if Rolle’s Theorem can be applied to f on [a, b]; if so, find
c in (a, b) such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].
4. f(x) = 6x on [−1, 1].
5. f(x) = x2 + x− 6 on [−3, 2].
6. f(x) = x2 + x− 2 on [−3, 2].
7. f(x) = x2 + x on [−2, 2].
8. f(x) = sin x on [π/6, 5π/6].
9. f(x) = cos x on [0, π].

10. f(x) = 1
x2 − 2x+ 1

on [0, 2].

In Exercises 11–18, a function f(x) and interval [a, b] are given.
Check if the Mean Value Theorem can be applied to f on [a, b];
if so, find a value c in [a, b] guaranteed by the Mean Value The‐
orem.

11. f(x) = x2 + 3x− 1 on [−2, 2].
12. f(x) = 5x2 − 6x+ 8 on [0, 5].
13. f(x) =

√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) = x2 − 9
x2 − 1

on [0, 2].

16. f(x) = tan x on [−π/4, π/4].
17. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].
18. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

19. Suppose that f is continuous on [1, 4] and differentiable on
(1, 4). If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4, how small
can f(4) possibly be?

20. Does there exist a function f such that f(0) = −1, f(2) = 4,
and f ′(x) ≤ 2 for all x?

21. Show that the equation 1+ 2x+ x3 + 4x5 = 0 has exactly
one real root.

22. Show that a polynomial of degree 3 has at most 3 real
roots.

23. (a) Suppose that f is differentiable everywhere and has
2 roots. Show that f ′ has at least one real root.

(b) Suppose that f is twice differentiable everywhere
and has 3 roots. Show that f ′′ has at least one real
root.

24. Let p, q, and r be constants, and define f(x) = px2+qx+ r.
Show that the Mean Value Theorem applied to f for the
interval [a, b] is always satisfied at the midpoint of the in‐
terval.

25. Let p and q be constants, and define f(x) = p
x + q. Show

that the Mean Value Theorem applied to f for the interval
[a, b] is always satisfied at the geometric average of the
endpoints.

Review
26. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].
27. Describe the critical points of f(x) = cos x.
28. Describe the critical points of f(x) = tan x.
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Chapter 3 The Graphical Behavior of Functions

3.3 Increasing and Decreasing Functions
Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

1 2

2

4

x

y

Figure 3.3.1: A graph of a function f used
to illustrate the concepts of increasing
and decreasing.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these terms mathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Definition 3.3.1 Increasing and Decreasing Functions
Let f be a function defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) ≤ f(b).

2. f is decreasing on I if for every a < b in I, f(a) ≥ f(b).

A function is strictly increasingwhen a < b in I implies f(a) < f(b), with
a similar definition holding for strictly decreasing.

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat‐
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

1 2

1

2

a b

(a, f(a))

(b, f(b))

x

y

Figure 3.3.2: Examining the secant line
of an increasing function.

There is a nice relationship between the sign of f ′ on some interval and
whether f is increasing or decreasing on that interval.

First, suppose that f(x) is differentiable and increasing on the interval (a, b).
Then for any c in (a, b) we have

f ′(c) = lim
h→0

f(c+ h)− f(c)
h

= lim
h→0+

f(c+ h)− f(c)
h

≥ 0

because f(c+ h) ≥ f(c) for small h > 0. Thus f ′(c) ≥ 0 for any c in (a, b).
Conversely, suppose f ′(c) ≥ 0 for all c in (a, b). Then for any s < t in (a, b),

f is continuous on [s, t] and differentiable on (s, t). The Mean Value Theorem

Notes:
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3.3 Increasing and Decreasing Functions

(Theorem 3.2.1) then implies that there is a c in (s, t) such that f(t) − f(s) =
f ′(c)(t − s) ≥ 0 because f ′(c) ≥ 0 and t − s > 0. Therefore f(t) ≥ f(s). This
means f is increasing on (a, b).

We’ve now shown that for any f differentiable on (a, b), f is increasing on
(a, b) if and only if f ′(c) ≥ 0 for all c in (a, b). Using the same arguments we
could show f is decreasing on (a, b) if and only if f ′(c) ≤ 0 for all c in (a, b). The
following Theorem is now an immediate consequence.

Theorem 3.3.1 Test For Increasing/Decreasing Functions
Let f be a continuous function on [a, b] and differentiable on (a, b).

1. If f ′(c) ≥ 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) ≤ 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Suppose a and b are in Iwhere f ′(a) > 0 and f ′(b) < 0. Then there must be
some number c between a and b with f ′(c) = 0. If f ′ is continuous on I, this is
an immediate consequence of the Intermediate Value Theorem. Even if f ′ isn’t
continuous, such a c must exist as a consequence of Darboux’s Theorem. (For
a special case of this theorem see Exercise 39.) In either case, this leads us to
the following method for finding intervals on which a function is increasing or
decreasing.

Key Idea 3.3.1 Finding Intervals on which f is Increasing or
Decreasing

Let f be a continuous function on an interval I. To find intervals on which f
is increasing and decreasing:

1. Find the critical points of f. That is, find all c in I where f ′(c) = 0 or
f ′ is not defined.

2. Use the critical points to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

Notes:
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Chapter 3 The Graphical Behavior of Functions

Watch the video:
Finding Intervals of Increase / Decrease Local Max
/ Mins at
https://youtu.be/-W4d0qFzyQY

We demonstrate using Key Idea 3.3.1 in the following example.

Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SOLUTION Using Key Idea 3.3.1, we first find the critical points of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. We see that f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en‐
tire domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two critical points we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in the following sign chart.

−1 1
3

x
f ′

f

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.

Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1].
Note we can arrive at the same conclusion without computation. For instance,
we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is clearly
positive and very large. The other terms are small in comparison, so we know
f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with and note that f ′(0) = −1 < 0. We conclude f is decreasing on [−1, 1/3].

Notes:
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3.3 Increasing and Decreasing Functions

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p − 1 > 0. We conclude that f is increasing on [1/3,∞)
and use all of our information to complete our sign chart.

−1 1
3

x
f ′ + − +

f incr decr incr

−2 −1 1 2

5

10

1/3

f ′(x)

f(x)

x

y

Figure 3.3.3: A graph of f(x) in Exam‐
ple 3.3.1, showing where f is increasing
and decreasing.

We can verify our calculations by considering Figure 3.3.3, where we have
graphed f and f ′. Note how f ′ > 0 when f is increasing and f ′ < 0 when f is
decreasing.

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap‐
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding critical points is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas‐
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relationship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the critical points and values are computed and the
graph shows all else that is desired, or (b) a graph is never produced, because
determining increasing/decreasing using f ′ is straightforward and the graph is
unnecessary. So our second reason why the above work is worthwhile is this:
once mastery of a subject is gained, one has options for finding needed informa‐
tion. We are working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it

Notes:
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Chapter 3 The Graphical Behavior of Functions

is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice‐versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin‐
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = c, after which it de‐
creases. A quick sketch helps confirm that f(c) must be a relative maximum. A
similar statement can be made for relative minimums, see Figure 3.3.4. We for‐
malize this concept in a theorem.

c
c

Case 1 Case 2

c c

Case 3 Case 4

Figure 3.3.4: The four cases of
Theorem 3.3.2

Theorem 3.3.2 First Derivative Test
Suppose that f is continuous on an open interval containing c, differen‐
tiable on an open interval containing c except possibly at c, and c is a
critical point of f. Then

1. If the sign of f ′ switches from positive to negative at c, then f(c) is
a relative maximum of f.

2. If the sign of f ′ switches from negative to positive at c, then f(c) is
a relative minimum of f.

3. If the sign of f ′ is positive before and after c, then f(c) is not a
relative extrema of f.

4. If the sign of f ′ is negative before and after c, then f(c) is not a
relative extrema of f.

Example 3.3.2 Using the First Derivative Test
Find the intervals on which f is increasing and decreasing, and use the First Der‐
ivative Test to determine the relative extrema of f, where

f(x) =
x2 + 3
x− 1

.

SOLUTION We start by noting the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Notes:
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3.3 Increasing and Decreasing Functions

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a critical point of
f, but we will include it in our list of critical points that we find next.

Using the Quotient Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the critical points of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That latter is straightforward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two critical points, x = −1, 3, and at x = 1 some‐
thing important might also happen. These three numbers divide the real num‐
ber line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computations; notice that the denominator of f ′ is always positive
so we can ignore it during our work.

Interval 1, (−∞,−1): Choosing a very small number (i.e., a negative number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be positive. Hence f is increasing on (−∞,−1].

Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on [−1, 1).

Interval 3, (1, 3]: Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.

Interval 4, (3,∞): Choosing a very large number p from this subinterval will
give a positive numerator and (of course) a positive denominator. So f is increas‐
ing on [3,∞).

In summary, f is increasing on (−∞,−1] and [3,∞) and is decreasing on
[−1, 1) and (1, 3]. Since at x = −1, the sign of f ′ switched from positive to
negative, Theorem 3.3.2 states that f(−1) is a relative maximum of f. At x =
3, the sign of f ′ switched from negative to positive, meaning f(3) is a relative
minimum. At x = 1, f is not defined, so there is no relative extrema at x = 1.

Note: We will use “U” in our sign
charts to indicate that something is
undefined.

Notes:
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−1 1 3
x

f ′ + − − +

f incr max decr U decr min incr

−4 −2 2 4

−20

−10
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20 f(x)

f ′(x)
x

y

Figure 3.3.5: A graph of f(x) in Exam‐
ple 3.3.2, showing where f is increasing
and decreasing.

This is summarized in the number line shown above. Also, Figure 3.3.5 shows
a graph of f, confirming our calculations. This figure also shows f ′, again demon‐
strating that f is increasing when f ′ > 0 and decreasing when f ′ < 0.

One is often tempted to think that functions always alternate “increasing,
decreasing, increasing, decreasing, …” around critical points. Our previous ex‐
ample demonstrated that this is not always the case. While x = 1 was not tech‐
nically a critical point, it was an important value we needed to consider. We
found that f was decreasing on “both sides of x = 1.”

Example 3.3.3 Using the First Derivative Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
identify the relative extrema.

SOLUTION We again start with taking derivatives. Since we know we
want to solve f ′(x) = 0, we will do some algebra after taking derivatives.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).

This derivation of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not defined
when x = 0. Thus we have 3 critical points, breaking the number line into 4
subintervals: (−∞,−1), (−1, 0), (0, 1), and (1∞).

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1].
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3.3 Increasing and Decreasing Functions

Interval 2, (−1, 0): Choose p = −1/2. Once more we practice finding the sign
of f ′(p) without computing an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negative × negative × positive” giving a positive number; f is in‐
creasing on [−1, 0].

Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 positive factors and one negative factor; f ′(p) < 0 and so f is decreas‐
ing on [0, 1].

Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on [1,∞). We can now put all this
information into a chart.

−1 0 1
x

f ′ − + − +

f decr min incr max decr min incr

−2 −1 1 2−3 3

5

10

f(x)
f ′(x)

x

y

Figure 3.3.6: A graph of f(x) in Exam‐
ple 3.3.3, showing where f is increasing
and decreasing.

We conclude by stating that f is increasing on (−1, 0) and (1,∞) and de‐
creasing on (−∞,−1) and (0, 1). The sign of f ′ changes from negative to posi‐
tive around x = −1 and x = 1, meaning by Theorem 3.3.2 that f(−1) and f(1)
are relative minima of f. As the sign of f ′ changes from positive to negative at
x = 0, we have a relative maximum at f(0). Figure 3.3.6 shows a graph of f, con‐
firming our result. We also graph f ′, highlighting once more that f is increasing
when f ′ > 0 and is decreasing when f ′ < 0.

We examine one more example.

Notes:
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Chapter 3 The Graphical Behavior of Functions

Example 3.3.4 Using the First Derivative Test with Trigonometry
Find the intervals on which f(θ) = cos θ − cos2 θ is increasing and decreasing
and find the relative extrema on the interval [0, 2π].

SOLUTION We see that f ′(θ) = − sin θ+ 2 cos θ sin θ = sin θ(2 cos θ−
1). Therefore, f ′(θ) = 0 when θ = 0, π

3 , π,
5π
3 , 2π. This breaks our number line

into four intervals.

Interval 1, (0, π
3 ): We choose θ = π

6 , and see that sin θ and 2 cos θ−1 are both
positive. Therefore, f ′ > 0.

Interval 2, ( π3 , π): When θ = π
2 , sin θ is positive, but 2 cos θ − 1 is negative.

Therefore, f ′ < 0.

Interval 3, (π, 5π
3 ): When θ = 3π

2 , sin θ and 2 cos θ−1 are both negative. There‐
fore, f ′ > 0.

Interval 4, ( 5π3 , 2π): When θ = 5π
6 , sin θ < 0 and 2 cos θ−1 > 0 so that f ′ < 0.

We summarize this information in a chart.

0 π
3 π 5π

3 2π
x
f ′ + − + −

f incr max decr min incr max decr

This means that f is increasing on [0, π
3 ] and [π,

5π
3 ] and decreasing on [

π
3 , π]

and [ 5π3 , 2π], so that the relative maxima are f( π3 ) and f( 5π3 ) and the relative
minimum is f(π). (The values f(0) and f(2π) would also be relative minima, but
relative extrema are not allowed to occur at the endpoints of an interval.)

We have seen how the first derivative of a function helps determine when
the function is going “up” or “down.” In the next section, we will see how the
second derivative helps determine how the graph of a function curves.
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Exercises 3.3
Terms and Concepts

1. In your ownwords describe what it means for a function to
be increasing.

2. What does a decreasing function “look like”?

3. Sketch a graph of a function on [0, 2] that is increasing but
not strictly increasing.

4. Give an example of a function describing a situation where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: Functions always switch from increasing to decreasing,
or decreasing to increasing, at critical points.

6. A function f has derivative f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we
not tell from the given information?

Problems

7. Given the graph of f, identify the intervals of increasing and
decreasing as well as the x coordinates of the relative ex‐
trema.

−4 −2 2 4

−20

20

x

y

8. Given the graph of f, identify the intervals of increasing and
decreasing as well as the x coordinates of the relative ex‐
trema.

π
3

2π
3

π 4π
3

5π
3

2π

1

2

x

y

9. Given the graph of f ′, identify the intervals of increasing
and decreasing as well as the x coordinates of the relative
extrema.

−2 2

−4

−2

2

4

x

y

10. Given the graph of f ′, identify the intervals of increasing
and decreasing as well as the x coordinates of the relative
extrema.

−1 1

−1

1

2

x

y

In Exercises 11–18, a function f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permitted) and verify Theorem 3.3.1.

11. f(x) = 2x+ 3

12. f(x) = x2 − 3x+ 5

13. f(x) = cos x

14. f(x) = tan x

15. f(x) = x3 − 5x2 + 7x− 1

16. f(x) = 2x3 − x2 + x− 1

17. f(x) = x4 − 5x2 + 4

18. f(x) = 1
x2 + 1

In Exercises 19–38, a function f(x) is given.

(a) Give the domain of f.

(b) Find the critical numbers of f.

(c) Create a number line to determine the intervals on
which f is increasing and decreasing.

(d) Use the First Derivative Test to determine whether each
critical point corresponds to a relative maximum, mini‐
mum, or neither.
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19. f(x) = x2 + 2x− 3
20. f(x) = x3 + 3x2 + 3
21. f(x) = 2x3 + x2 − x+ 3
22. f(x) = x3 − 3x2 + 3x− 1

23. f(x) = 1
x2 − 2x+ 2

24. f(x) = x2 − 4
x2 − 1

25. f(x) = x
x2 − 2x− 8

26. f(x) = (x− 2)2/3

x
27. f(x) = sin x cos x on (−π, π).
28. f(x) = x5 − 5x
29. f(x) = x− 2 sin x on 0 ≤ x ≤ 3π
30. f(x) = cos2 x− 2 sin x on 0 ≤ x ≤ 2π
31. f(x) = x

√
x− 3

32. f(x) = (x2 − 1)3

33. f(x) = x1/3(x+ 4)

34. f(θ) = 2 cos θ + cos2 θ on [0, 2π]

35. f(x) = 2
√
x− 4x2

36. f(x) = 5x2/3 − 2x5/3

37. f(x) = sin3 x on [0, 2π]

38. f(x) = (x+ 1)5 − 5x− 2

39. A special case of Darboux’s Theorem. Suppose f(x) is dif‐
ferentiable on the open interval (a, b). Suppose c and d
belong to the interval (a, b) with c < d. Show that if f ′(c)
and f ′(d) have opposite signs then there is an r in the in‐
terval (c, d) such that f ′(r) = 0. (This statement would
follow from the Intermediate Value Theorem if f ′ were con‐
tinuous on [a, b] but we are not assuming f ′ is continuous
here.)

Review

40. Consider f(x) = x2 − 3x+ 5 on [−1, 2]; find c guaranteed
by the Mean Value Theorem.

41. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed
by the Mean Value Theorem.
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3.4 Concavity and the Second Derivative

3.4 Concavity and the Second Derivative
Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f ′, can relay important information about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivative, namely f ′′, which is the
second derivative of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. As with f, f ′ has relative maxima and minima where f ′′ = 0 or is
undefined.

This section explores how knowing information about f ′′ gives information
about f.

Concavity
We begin with a definition, then explore its meaning.

Note: We often state that “f is con‐
cave up” instead of “the graph of f is
concave up” for simplicity.

Definition 3.4.1 Concave Up and Concave Down
Let f be differentiable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.
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Figure 3.4.1: A function f with a graph
that is (a) concave up and (b) concave
down. Notice how the slopes of the tan‐
gent lines, when looking from left to
right, are (a) increasing and (b) decreas‐
ing.

Geometrically, a function is concave up if its graph lies above its tangent lines,
so that it curves upward. A function is concave down if its graph lies below its
tangent lines, so that it curves downward.

The graph of a function f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1(a), where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a function is decreasing and concave up, then its rate of decrease is slowing;
it is “leveling off.” If the function is increasing and concave up, then the rate of
increase is increasing. The function is increasing at a faster and faster rate.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.1(b), where a concave down graph
is shown along with some tangent lines. Notice how the tangent line on the left
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Chapter 3 The Graphical Behavior of Functions

is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a function is increasing and concave down, then its rate of increase is slow‐
ing; it is “leveling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

Note: A mnemonic for remembering
what concave up / down means is:
“Concave up is like a cup; concave
down is like a frown.” It is admittedly
terrible, but it works.

Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.1 Test for Concavity
Let f be twice differentiable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 3.4.2 Point of Inflection
A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.2 shows a graph of a function with inflection points labeled.
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f ′′ > 0
c. up

f ′′ > 0
c. up

f ′′ < 0
c. down

x

y

Figure 3.4.2: A graph of a function with
its inflection points marked. The inter‐
vals where concave up/down are also
indicated.

If the concavity of f changes at a point (c, f(c)), then f ′ is changing from
increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from positive to negative (or, negative to positive) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Points of Inflection
If (c, f(c)) is a point of inflection on the graph of f, then either f ′′ = 0 or
f ′′ is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.
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3.4 Concavity and the Second Derivative

Watch the video:
Finding Local Maximums/Minimums — Second
Derivative Test at
https://youtu.be/QtXCIxB6kW8

Example 3.4.1 Finding intervals of concave up/down, inflection points
Let f(x) = x3 − 3x+ 1. Find the inflection points of f and the intervals on which
it is concave up/down.

SOLUTION We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflection points, we use Theorem 3.4.2 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflection.

0
x

f ′′ − +

f CD IP CU

(a)

−2 −1 1 2

−2

2f(x) f ′′(x)

x

y

(b)

Figure 3.4.3: A number line determining
the concavity of f and a graph of f used
in Example 3.4.1.

This possible inflection point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous section
to determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflection point.

The number line in Figure 3.4.3(a) illustrates the process of determining con‐
cavity (to save space, we will abbreviate “concave down”, “concave up”, and
“inflection point” to “CD”, “CU”, and “IP”, respectively). Figure 3.4.3(b) shows a
graph of f and f ′′, confirming our results. Notice how f is concave down precisely
when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 3.4.2 Finding intervals of concave up/down, inflection points
Let f(x) = x/(x2 − 1). Find the inflection points of f and the intervals on which
it is concave up/down.

SOLUTION The first thing we see is that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We cannot say that f has points of inflection at x = ±1 as they are not
part of the domain, but we must still consider these x‐values to be important
and will include them in our number line.

We need to find f ′ and f ′′. Using the Quotient Rule and simplifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

To find the possible points of inflection, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
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Chapter 3 The Graphical Behavior of Functions

we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0 (of course, f is not defined at these points either).

The important x‐values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in our sign
chart below. We determine the concavity on each. Keep in mind that all we are
concerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be positive. In the
numerator, the (c2 + 3) will be positive and the 2c term will be negative. Thus
the numerator is negative and f ′′(c) is negative. We conclude f is concave down
on (−∞,−1).

Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer‐
ator will be negative, the term (c2 + 3) in the numerator will be positive, and
the term (c2 − 1)3 in the denominator will be negative. Thus f ′′(c) > 0 and f is
concave up on this interval.

Interval 3, (0, 1): Any number c in this interval will be positive and “small.” Thus
the numerator is positivewhile the denominator is negative. Thus f ′′(c) < 0 and
f is concave down on this interval.

Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so
we conclude that f is concave up on (1,∞).
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−5
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f(x) f ′′(x)
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y

Figure 3.4.4: A graph of f(x) and f ′′(x) in
Example 3.4.2.

−1 0 1
x

f ′′ − + − +

f CD U CU IP CD U CU

We conclude that f is concave up on (−1, 0) and (1,∞) and concave down
on (−∞,−1) and (0, 1). There is only one point of inflection, (0, 0), as f is not
defined at x = ±1. Our work is confirmed by the graph of f in Figure 3.4.4.
Notice how f is concave up whenever f ′′ is positive, and concave down when f ′′
is negative.

Recall that relative maxima and minima of f are found at critical points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relative maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflection points of f.
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3.4 Concavity and the Second Derivative

What does a “relative maximum of f ′ ”mean? The derivative measures the
rate of change of f; maximizing f ′ means findingwhere f is increasing themost—
where f has the steepest tangent line. A similar statement can be made for min‐
imizing f ′; it corresponds to where f has the steepest negatively‐sloped tangent
line.

We utilize this concept in the next example.
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Figure 3.4.5: A graph of S(t) in Exam‐
ple 3.4.3, modeling the sale of a product
over time.

Example 3.4.3 Understanding inflection points
The sales of a certain product over a three‐year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the time in years, shown in Figure 3.4.5. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SOLUTION We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Setting S ′′(t) = 0 and solving, we
get t = 2/

√
3 ≈ 1.16 (we ignore the negative value of t since it does not lie in

the domain of our function S).
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Figure 3.4.6: A graph of S(t) in Exam‐
ple 3.4.3 along with S ′(t).

0 2√
3 ≈ 1.2

t
f ′′ − +

f CD IP CU

This is both the inflection point and the point of maximum decrease. This
is the point at which things first start looking up for the company. After the
inflection point, it will still take some time before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 3.4.6. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas‐
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every critical point corresponds to a relative extrema; f(x) = x3 has a
critical point at x = 0 but no relative maximum or minimum. Likewise, just be‐
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
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without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.4.7.

−1 −0.5 0.5 1

0.5

1

x

y

Figure 3.4.7: A graph of f(x) = x4. Clear‐
ly f is always concave up, despite the fact
that f ′′(x) = 0 when x = 0. It this exam‐
ple, the possible point of inflection (0, 0)
is not a point of inflection.

The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value corre‐
sponded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function f is concave up, then that critical value
must correspond to a relative minimum of f, etc. See Figure 3.4.8 for a visualiza‐
tion of this.

−2 −1 1 2

−10

−5

5

10

CD⇒
rel. max

CU⇒
rel min

x

y

Figure 3.4.8: Demonstrating the fact that
relative maxima occur when the graph is
concave down and relative minima occur
when the graph is concave up.

Theorem 3.4.3 The Second Derivative Test
Let c be a critical point of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

Note that if f ′′(c) = 0, then the Second Derivative Test is inconclusive. The
Second Derivative Test relates to the First Derivative Test in the following way.
If f ′′(c) > 0, then the graph is concave up at a critical point c and f ′ itself is
growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negative
to positive at c. This means the function goes from decreasing to increasing,
indicating a local minimum at c.

Example 3.4.4 Using the Second Derivative Test
Let f(x) = 100/x+ x. Find the critical points of f and use the Second Derivative
Test to label them as relative maxima or minima.

SOLUTION
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f ′′(10) > 0

f ′′(−10) < 0
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Figure 3.4.9: A graph of f(x) in Exam‐
ple 3.4.4. The second derivative is eval‐
uated at each critical point. When the
graph is concave up, the critical point
represents a local minimum; when the
graph is concave down, the critical point
represents a local maximum.

We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the critical points (note that f ′ is not defined at
x = 0, but neither is f so this is not a critical point.) We find the critical points
are x = ±10. Evaluating f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evaluating f ′′(−10) = −0.1 < 0, determining a relative maximum
at x = −10. These results are confirmed in Figure 3.4.9.
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3.4 Concavity and the Second Derivative

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter 1
we saw how limits explained asymptotic behavior. In the next section we com‐
bine all of this information to produce accurate sketches of functions.
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Exercises 3.4
Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:
(a) Increasing, concave up on (0, 1),
(b) increasing, concave down on (1, 2),
(c) decreasing, concave down on (2, 3) and
(d) increasing, concave down on (3, 4).

3. Is it possible for a function to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

4. Is it possible for a function to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a function.

Problems

5. Given the graph of f ′′, identify the concavity of f and its in‐
flection points.
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−4

−2
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y

6. Given the graph of f ′, identify the concavity of f and its in‐
flection points.

−2 2

−2

2

x

y

In Exercises 7–16, a function f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permitted) and verify Theorem 3.4.1.

7. f(x) = −7x+ 3

8. f(x) = −4x2 + 3x− 8
9. f(x) = 4x2 + 3x− 8

10. f(x) = x3 − 3x2 + x− 1
11. f(x) = −x3 + x2 − 2x+ 5
12. f(x) = sin x
13. f(x) = tan x

14. f(x) = 1
x2 + 1

15. f(x) = 1
x

16. f(x) = 1
x2

In Exercises 17–36, a function f(x) is given.

(a) Find the x coordinates of the possible points of inflec‐
tion of f.

(b) Create a number line to determine the intervals on
which f is concave up or concave down.

(c) Find the critical points of f and use the Second Deriva‐
tive Test, when possible, to determine the relative ex‐
trema.

(d) Find the x values where f ′(x) has a relative maximum
or minimum.

17. f(x) = x2 − 2x+ 1
18. f(x) = −x2 − 5x+ 7
19. f(x) = x3 − x+ 1
20. f(x) = 2x3 − 3x2 + 9x+ 5

21. f(x) = x4

4
+

x3

3
− 2x+ 3

22. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2
23. f(x) = x4 − 4x3 + 6x2 − 4x+ 1
24. f(x) = sec x on (−3π/2, 3π/2)

25. f(x) = 1
x2 + 1

26. f(x) = x
x2 − 1

27. f(x) = sin x+ cos x on (−π, π)

28. f(x) = x2ex

29. f(x) = x2 ln x

30. f(x) = e−x2

31. f(x) = x
√
x+ 3

32. f(x) = cos2 x− 2 sin x on (0, 2π)
33. f(x) = x3 − 3x2 − 9x+ 4
34. f(x) = x4 − 2x2 + 3
35. f(x) = 1+ 3x2 − 2x3

36. f(x) =
√
x− 4

√
x
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3.5 Curve Sketching

3.5 Curve Sketching
Wehave been learning howwe can understand the behavior of a function based
on its first and second derivatives. While we have been treating the properties
of a function separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the function
without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand‐held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not particularly fast— itwill require
time (but it is not hard). So again: why bother?

f ′ > 0, increasing

f ′′ < 0, c. down

f ′ < 0, decreasing

f ′′ < 0, c. down

f ′ < 0,decreasing

f ′′ > 0, c. up

f ′ > 0, increasing

f ′′ > 0, c. up

Figure 3.5.1: Demonstrating the 4 ways
that concavity interacts with increasing /
decreasing, along with the relationships
with the first and second derivatives.

We are attempting to understand the behavior of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behavior we care about
is explained by f ′ and f ′′. Understanding the interactions between the graph
of f and f ′ and f ′′ is important and is illustrated in Figure 3.5.1. To gain this
understanding, onemight argue that all that is needed is to look at lots of graphs.
This is true to a point, but is somewhat similar to stating that one understands
how an engine works after looking only at pictures. It is true that the basic ideas
will be conveyed, but “hands‐on” access increases understanding.

The following Key Idea summarizes what we have learned so far that is ap‐
plicable to sketching graphs of functions and gives a framework for putting that
information together. It is followed by several examples.

(continued)

Key Idea 3.5.1 Curve Sketching
To produce an accurate sketch a given function f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
entire real line then find restrictions, such aswhere a denominator
is 0 or where negatives appear under the radical.

2. Find the location of any vertical asymptotes of f (usually done in
conjunction with the previous step).

3. Find the x and y‐intercepts of f, and any symmetry.

4. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the function.

5. Find the critical points of f.

6. Find the possible points of inflection of f.
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Key Idea 3.5.1 continued
7. Create a number line that includes all critical points, possible

points of inflection, and locations of vertical asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

8. Evaluate f at each critical point and possible point of inflection.
Plot these points on a set of axes. Connect these points with
curves exhibiting the proper concavity. Sketch asymptotes and x
and y‐intercepts where applicable.

Watch the video:
Summary of Curve Sketching — Example 2, Part 1
of 4 at
https://youtu.be/DMYUsv8ZaoY

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 4x+ 10.

SOLUTION We follow the steps outlined in the Key Idea.

1. The domain of f is the entire real line; there are no values x for which f(x)
is not defined.

2. There are no vertical asymptotes.

3. We see that f(0) = 10, and f does not appear to factor easily (so we skip
finding the roots). It has no symmetry.

4. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

5. Find the critical points of f. We compute f ′(x) = 9x2 − 20x+ 4 = (9x−
2)(x− 2), so that x = 2

9 , 2.

6. Find the possible points of inflection of f. We see f ′′(x) = 18x − 20, so
that

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.
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3.5 Curve Sketching

7. Weplace the values x = 2
9 ,

10
9 , 2 on a number line. Wemark each subinter‐

val as increasing or decreasing, concave up or down, using the techniques
used in Sections 3.3 and 3.4.
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(a)
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(b)

Figure 3.5.2: Sketching f in Exam‐
ple 3.5.1.

2
9 ≈ 0.2 10

9 ≈ 1.1 2
x

f ′ + − − +

f ′′ − − + +

f incr
CD max decr

CD IP
decr
CU min

incr
CU

8. We plot the appropriate points on axes as shown in Figure 3.5.2(a) and
connect the points with the proper concavity. Our curve crosses the y axis
at y = 10 and crosses the x axis near x = −0.75. In Figure 3.5.2(b) we
show a graph of f drawn with a computer program, verifying the accuracy
of our sketch.

Example 3.5.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SOLUTION We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restrictions. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. The vertical asymptotes of f are at x = −2 and x = 3, the places where f is
undefined. We see that lim

x→−2−
f(x) = ∞, lim

x→−2+
f(x) = −∞, lim

x→3−
f(x) =

−∞, and lim
x→3+

f(x) = ∞.

3. We see that f(0) = 1
3 and that f(x) = 0when 0 = x2−x−2 = (x−2)(x+1)

so that x = −1, 2. There is no symmetry.

4. There is a horizontal asymptote of y = 1, as both lim
x→−∞

f(x) = 1 and
lim
x→∞

f(x) = 1. (Either one would be sufficient to give the horizontal as‐
ymptote.)

Notes:

179



Chapter 3 The Graphical Behavior of Functions

5. To find the critical points of f, we first find f ′(x). Using the Quotient Rule,
we find

f ′(x) =
−8x+ 4

(x2 − x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not critical points. The only critical
point is x = 1/2.

6. To find the possible points of inflection, we find f ′′(x), again employing
the Quotient Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

We find that f ′′(x) is never 0 (setting the numerator equal to 0 and solving
for x, we find the only roots to this quadratic are imaginary) and f ′′ is
undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3 (although these are not inflection points, since f is not
defined there).
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Figure 3.5.3: Sketching f in Exam‐
ple 3.5.2.

7. We place the values x = 1/2, x = −2 and x = 3 on a number line. We
mark in each interval whether f is increasing or decreasing, concave up
or down. We see that f has a relative maximum at x = 1/2; concavity
changes only at the vertical asymptotes.
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x
f ′ + + − −

f ′′ + − − +

f incr
CU U

incr
CD max decr

CD U
decr
CU

8. In Figure 3.5.3(a), we plot the points from the number line on a set of axes
and connect the points with the appropriate concavity. We also show f
crossing the x axis at x = −1 and x = 2. Figure 3.5.3(b) shows a computer
generated graph of f, which verifies the accuracy of our sketch.

Notes:
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3.5 Curve Sketching

Example 3.5.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SOLUTION We again follow Key Idea 3.5.1.
1. We assume that the domain of f is all real numbers and consider restric‐

tions. The only restrictions come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. There are no vertical asymptotes.

3. We see that f(0) = −5
2
and that f(x) = 0 when x = −1, 2.

4. We have a horizontal asymptote of y = 5, as

lim
x→±∞

f(x) = lim
x→±∞

5(1− 2
x )(1+

1
x )

1+ 2
x +

4
x2

= 5.

5. We find the critical points of f by setting f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

6. We find the possible points of inflection by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead app‐
roximate the roots at x = −5.759, x = −1.305 and x = 1.064.

7. We place the critical points and possible inflection points on a number
line and mark each interval as increasing/decreasing, concave up/down
appropriately.

−5.8 −4 −1.3 0 1.1
x

f ′ + + − − + +

f ′′ + − − + + −

f incr
CU IP incr

CD max decr
CD IP decr

CU min incr
CU IP incr

CD

8. In Figure 3.5.4(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points with
the appropriate concavity. Figure 3.5.4(b) shows a computer generated
graph of f, affirming our results (but the top left was slightly off).

−5 5

5

x

y

(a)

−5 5

5

x

y

(b)

Figure 3.5.4: Sketching f in Exam‐
ple 3.5.3.

Notes:
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Chapter 3 The Graphical Behavior of Functions

In each of our examples, we found a few, significant points on the graph
of f that corresponded to changes in increasing/decreasing or concavity. We
connected these points with curves, and finished by showing a very accurate,
computer generated graph.

Why are computer graphics so good? It is not because computers are “smart‐
er” than we are. Rather, it is largely because computers are much faster at com‐
puting than we are. In general, computers graph functions much like most stu‐
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecting lines
are short and the graph looks smooth.

This does a fine job of graphing inmost cases (in fact, this is themethod used
formany graphs in this text). However, in regionswhere the graph is very “curvy,”
this can generate noticeable sharp edges on the graph unless a large number of
points are used. High quality computer algebra systems, such as Mathematica,
use special algorithms to plot lots of points only where the graph is “curvy.”

In Figure 3.5.5, a graph of y = sin x is given, generated byMathematica. The
small points represent each of the places Mathematica sampled the function.
Noticehowat the “bends” of sin x, lots of points are used; where sin x is relatively
straight, fewer points are used. (Many points are also used at the endpoints to
ensure the “end behavior” is accurate.)

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.5.5: A graph of y = sin x generated byMathematica.
How doesMathematica know where the graph is “curvy”? Calculus. When

we study curvature in a later chapter, we will see how the first and second de‐
rivatives of a function work together to provide a measurement of “curviness.”
Mathematica employs algorithms to determine regions of “high curvature” and
plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the

Notes:
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3.5 Curve Sketching

graph of a function is largely determined by understanding the behavior of the
function at a fewkey places.” In Example 3.5.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond
curve sketching. The next chapter explores some of these applications, demon‐
strating just a few kinds of problems that can be solved with a basic knowledge
of differentiation.

Notes:
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Exercises 3.5
Terms and Concepts

1. Why is sketching curves by hand beneficial even though
technology is readily available?

2. T/F: When sketching graphs of functions, it is useful to find
the critical points.

3. T/F: When sketching graphs of functions, it is useful to find
the possible points of inflection.

4. T/F: When sketching graphs of functions, it is useful to find
the horizontal and vertical asymptotes.

Problems

5. Given the graph of f, identify the concavity of f, its inflec‐
tion points, its regions of increasing and decreasing, and
its relative extrema.

−2 2

−4

−2

2

4

x

y

6. Given the graph of f ′, identify the concavity of f, its inflec‐
tion points, its regions of increasing and decreasing, and its
relative extrema.

−2 2

−4

−2

2

4

x

y

In Exercises 7–12, practice using Key Idea 3.5.1 by applying the
principles to the given functions with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13–46, sketch a graph of the given function using
Key Idea 3.5.1. Show all work; check your answer with technol‐
ogy.

13. f(x) = x3 − 2x2 + 4x+ 1
14. f(x) = −x3 + 5x2 − 3x+ 2
15. f(x) = x3 + 3x2 + 3x+ 1
16. f(x) = x3 − x2 − x+ 1
17. f(x) = (x− 2) ln(x− 2)
18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x+ sin x on [0, 2π].

22. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

23. f(x) = x
√
x+ 1

24. f(x) = x2ex

25. f(x) = sin x cos x on [−π, π]

26. f(x) = (x− 3)2/3 + 2

27. f(x) = (x− 1)2/3

x

28. f(x) =
√

x
x− 5

29. f(x) = sec x− 2 cos x on [0, 2π].
30. f(x) = x

√
2− x2

31. f(x) = x√
x2 − 1

32. f(x) = x5/3 − 5x2/3

33. f(x) = sin x
2+ cos x

on [0, 2π].

34. f(x) = x
x2 + 3

35. f(x) = 4x2 − 4x+ 1
4x2 − 12x+ 9

Hint: f(x) can be simplified in a variety of ways. Use
whichever simplification works best for your current task.

36. y =
√
x2 + x− x

37. y = x+ cos x
38. y = x tan x on (− π

2 ,
π
2 )

39. y = sin x+
√
3 cos x on [−2π, 2π]

40. y = csc x− 2 sin x on (0, π)

41. f(x) = 3
x2 + 4

42. f(x) = 3
x2 − 4

43. f(x) = x
x2 + 4

44. f(x) = x
x2 − 4

45. f(x) = x
x− 4
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46. f(x) = (x− 1)2

x2 + 1

In Exercises 47–52, sketch the graph of a function that satisfies
all of the given conditions.

47. f ′(0) = f ′(2) = f ′(4) = 0,
f ′(x) > 0 if x < 0 or 2 < x < 4,
f ′(x) < 0 if 0 < x < 2 or x > 4,
f ′′(x) > 0 if 1 < x < 3, f ′′(x) < 0 if x < 1 or x > 4

48. f ′(5) = 0, f ′(x) < 0 when x < 5,
f ′(x) > 0 if x > 5, f ′′(2) = 0, f ′′(8) = 0,
f ′′(x) < 0 if x < 2 or x > 8,
f ′′(x) > 0 if 2 < x < 8

49. f(0) = 0, f ′(−2) = f ′(1) = f ′(9) = 0,
lim

x→∞
f(x) = 0, lim

x→6
f(x) = −∞,

f ′(x) < 0 on (−∞,−2), (1, 6), (9,∞),
f ′(x) > 0 on (−2, 1), (6, 9),
f ′′(x) > 0 on (−∞, 0), (12,∞),
f ′′(x) < 0 on (0, 6), (6, 12)

50. f is odd, f ′(x) < 0 on (0, 2),
f ′(x) > 0 on (2,∞), f ′′(x) > 0 on (0, 3),
f ′′(x) < 0 on (3,∞), lim

x→∞
f(x) = −2

51. concave up on (−∞,−1), (1,∞);
concave down on (−1, 1);
increasing on (−∞, 0); and
decreasing on (0,∞).

52. lim
x→−∞

f(x) = 1, lim
x→3−

f(x) = ∞,

lim
x→∞

f(x) = −1, lim
x→3+

f(x) = −∞;

f ′(x) > 0 on (−∞,−2), (−1, 0), (2, 3), (3,∞);
f ′(x) < 0 on (−2,−1), (0, 2);
f ′′(x) > 0 on (−∞,−3), (1, 3); and
f ′′(x) < 0 on (−3,−1), (−1, 1), (3,∞).

In Exercises 53–56, a function with the parameters a and b are
given. Describe the critical points and possible points of inflec‐
tion of f in terms of a and b.

53. f(x) = a
x2 + b2

54. f(x) = ax2 + bx+ 1
55. f(x) = sin(ax+ b)

56. f(x) = (x− a)(x− b)

57. Given x2 + y2 = 1, use implicit differentiation to find dy
dx

and d2y
dx2

. Use this information to justify the sketch of the
unit circle.
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4: APPLICATIONS OF THE
DERIVATIVE

In Chapter 3, we learned how the first and second derivatives of a function influ‐
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Related Rates

When two quantities are related by an equation, knowing the value of one quan‐
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C = 6π in determines
the radius must be 3 in.

The topic of related rates takes this one step further: knowing the rate at
which one quantity is changing can determine the rate at which the other chang‐
es.

Watch the video:
Related Rates #6 — Rate at Which the Circumfer‐
ence of a Circle is Changing at
https://youtu.be/tZl5h7590go

Note: This section relies heavily on
implicit differentiation, so referring
back to Section 2.6 may help.

We demonstrate the concepts of related rates through examples.

Example 4.1.1 Understanding related rates
The radius of a circle is growing at a rate of 5 in/hr. At what rate is the circum‐
ference growing?

SOLUTION The circumference and radius of a circle are related by C =
2πr. We are given information about how the length of r changes with respect
to time; that is, we are told dr

dt = 5 in/hr. We want to know how the length of C
changes with respect to time, i.e., we want to know dC

dt .

Notes:
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Chapter 4 Applications of the Derivative

Implicitly differentiate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5 in/hr, we know

dC
dt

= 2π5 = 10π in/hr.

Before we look at another example, we’ll state a few ideas on approaching
these problems.

Key Idea 4.1.1 Solving Related Rates Problems
1. Understand the problem. Clearly identify what quantities are giv‐

en and what are to be found. Make a sketch if helpful.

2. Assign mathematical notation to all quantities, including those
that are functions of time.

3. Create an equation relevant to the context of the problem, using
the information given.

4. Substitute constant quantities and if necessary, use the given in‐
formation to eliminate other variables.

5. Use the Chain Rule to differentiate both sides of the equation.

6. Substitute the known quantities, and solve for the unknown rate.

The important thing to remember is that you must differentiate before you
substitute varying values. Otherwise, you’ll substitute a constant forwhat should
be a variable, and it’s derivative will be zero. Consider another example.

Notes:
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4.1 Related Rates

Example 4.1.2 Finding related rates
Water streams out of a faucet at a rate of 2 in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8 in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

SOLUTION

1. We can answer this question two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2 in3/s, where

volume of puddle = area of circle × depth.

Since the depth is constant at 1/8 in, the area must be growing by 16in2/s.
This approach reveals the underlying related‐rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the derivative of both sides with respect to t, employing implicit differen‐
tiation.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

As dV
dt = 2, we know 2 = 1

8
dA
dt , and hence dA

dt = 16. Thus the area is
growing by 16 in2/s.

2. To start, we need an equation that relates what we know to the radius.
We know that V = πr2h = π

8 r
2. Implicitly derive both sides with respect

to t:

V =
π

8
r2

d
dt
(
V
)
=

d
dt
(π
8
r2
)

dV
dt

=
π

8
· 2rdr

dt
=

π

4
r
dr
dt

Solving for
dr
dt
, we have

dr
dt

=
dV
dt
π
4 r

=
2
π
4 r

=
8
πr

.

Notes:
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Chapter 4 Applications of the Derivative

Note how our answer is not a number, but rather a function of r. In other
words, the rate at which the radius is growing depends on how big the
circle already is. If the circle is very large, adding 2 in3 of water will not
make the circle much bigger at all. If the circle is dime‐sized, adding the
same amount ofwaterwill make a radical change in the radius of the circle.
In someways, our problemwas (intentionally) ill‐posed. We need to spec‐
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10 in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π

≈ 0.25 in/s.

Example 4.1.3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55 mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25 mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, attached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75 mph. (This straight‐line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

B = 1/2

C

A
=

1/
2

N

E

Officer

Car

Figure 4.1.1: A sketch of an officer at‐
tempting to measure the speed of a car
in Example 4.1.3.

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.1.1. Using his radar gun, he measures a reading of 20
mph. By using landmarks, he believes both he and the other car are about 1/2
mile from the intersection of their two roads.

If the speed limit on the other road is 55 mph, is the other driver speeding?

SOLUTION Using the diagram in Figure 4.1.1, let’s label what we know
about the situation. As both the police officer and other driver are 1/2mile from
the intersection, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 30 mph; that is, dA
dt = −30. The

reason this rate of change is negative is that A is getting smaller; the distance
between the officer and the intersection is shrinking. The radar measurement
is dC

dt = 20. We want to find dB
dt .

Notes:
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4.1 Related Rates

Weneed an equation that relatesB toA and/or C. The Pythagorean Theorem
is a good choice: A2 + B2 = C2. Differentiate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

Note: Example 4.1.3 is both inter‐
esting and impractical. It highlights
the difficulty in using radar in a non‐
linear fashion, and explains why “in
real life” the police officer would fol‐
low the other driver to determine
their speed, and not pull out pencil
and paper.

The principles here are important,
though. Many automated vehicles
make judgments about other mov‐
ing objects based on perceived dis‐
tances, radar‐like measurements and
the concepts of related rates.

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 58.28 mph.

The other driver appears to be speeding slightly.

Example 4.1.4 Studying related rates
A camera is placed on a tripod 10 ft from the side of a road. The camera is to turn
to track a car that is to drive by at 100 mph for a promotional video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.1.2 shows the proposed
setup.

θ

10ft

x

100mph

Figure 4.1.2: Tracking a speeding car (at
left) with a rotating camera.

How fast must the camera be able to turn to track the car?

SOLUTION We seek information about how fast the camera is to turn;
therefore, we need an equation that will relate an angle θ to the position of the
camera and the speed and position of the car.

Figure 4.1.2 suggests we use a trigonometric equation. Letting x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tan θ =
x
10

. (4.1.1)

As the car ismoving at 100mph, we have dx
dt = −100mph (as in the last example,

since x is getting smaller as the car travels, dx
dt is negative). We need to convert

themeasurements so they use the same units; rewrite ‐100mph in terms of ft/s:

dx
dt

= −100
m
hr

= −100
m
hr

· 5280 ft
m

· 1
3600

hr
s

= −146.6 ft/s.

Notes:
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Chapter 4 Applications of the Derivative

Now take the derivative of both sides of Equation (4.1.1) using implicit differen‐
tiation:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.1.2)

We want to know the fastest the camera has to turn. Common sense tells us
this is when the car is directly in front of the camera (i.e., when θ = 0). Our
mathematics bears this out. In Equation (4.1.2) we see this is when cos2 θ is
largest; this is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67 ft/s, we have

dθ
dt

= −1 rad
10 ft

146.67 ft/s = −14.667 radians/s.

We find that dθ
dt is negative; this matches our diagram in Figure 4.1.2 for θ is

getting smaller as the car approaches the camera.
What is the practical meaning of −14.667 radians/s? Recall that 1 circular

revolution goes through 2π radians, thus 14.667 rad/s means 14.667/(2π) ≈
2.33 revolutions per second. The negative sign indicates the camera is rotating
in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This section stresses the “rate of change” aspect of the deriva‐
tive to find a relationship between the rates of change of two related quantities.
In the next section we use Extreme Value concepts to optimize quantities.

Notes:
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Exercises 4.1
Terms and Concepts

1. T/F: Implicit differentiation is often used when solving “re‐
lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems

3. The area of a square is increasing at a rate of 42 ft2/min.
How fast is the side length increasing when the length is 7
ft?

4. Water flows onto a flat surface at a rate of 5cm3/s forming a
circular puddle 10mmdeep. How fast is the radius growing
when the radius is:
(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

5. A spherical balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:
(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

6. Consider the traffic situation introduced in Example 4.1.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2 mile from the intersection, the oth‐
er car is traveling due west, the officer is traveling north at
50mph, and the radar reading is−80mph?

7. Consider the traffic situation introduced in Example 4.1.3.
Calculate how fast the “other car” is traveling in each of the
following situations.
(a) The officer is traveling due north at 50mph and is

1/2 mile from the intersection, while the other car is
1 mile from the intersection traveling west and the
radar reading is−80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersection, while the other car is
1/2mile from the intersection traveling west and the
radar reading is−80mph?

8. An F‐22 aircraft is flying at 500mph with an elevation of
10,000ft on a straight‐line path that will take it directly over
an anti‐aircraft gun.

θ

x

10,000 ft

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:
(a) 1 mile away?
(b) 1/5 mile away?
(c) Directly overhead?

9. An F‐22 aircraft is flying at 500mph with an elevation of
100ft on a straight‐line path that will take it directly over
an anti‐aircraft gun as in Exercise 8 (note the lower eleva‐
tion here).
How fast must the gun be able to turn to accurately track
the aircraft when the plane is:
(a) 1000 feet away?
(b) 100 feet away?
(c) Directly overhead?

10. A 24ft. ladder is leaning against a house while the base is
pulled away at a constant rate of 1ft/s.

24
ft

1 ft/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:
(a) 1 foot from the house?
(b) 10 feet from the house?
(c) 23 feet from the house?
(d) 24 feet from the house?

11. A boat is being pulled into a dock at a constant rate of
30ft/min by a winch located 10ft above the deck of the
boat.

10ft

At what rate is the boat approaching the dock when the
boat is:
(a) 50 feet out?
(b) 15 feet out?
(c) 1 foot from the dock?
(d) What happens when the length of rope pulling in the

boat is less than 10 feet long?
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12. An inverted cylindrical cone, 20ft deep and 10ft across at
the top, is being filled with water at a rate of 10ft3/min. At
what rate is the water rising in the tank when the depth of
the water is:
(a) 1 foot?
(b) 10 feet?
(c) 19 feet?

How long will the tank take to fill when starting at empty?
13. A rope, attached to a weight, goes up through a pulley at

the ceiling and back down to a worker. The man holds the
rope at the same height as the connection point between
rope and weight.

30
ft

2 ft/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 ft) and begins to walk away at a rate
of 2ft/s. How fast is the weight rising when the man has
walked:
(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

14. Consider the situation described in Exercise 13. Suppose
the man starts 40ft from the weight and begins to walk
away at a rate of 2ft/s.
(a) How long is the rope?
(b) How fast is the weight rising after the man has

walked 10 feet?
(c) How fast is the weight rising after the man has

walked 30 feet?
(d) How farmust themanwalk to raise theweight all the

way to the pulley?

15. A hot air balloon lifts off from ground rising vertically. From
100 feet away, a 5’ woman tracks the path of the balloon.
Whenher sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.
(a) What is the elevation of the balloon?
(b) How fast is it rising?

16. A company that produces landscaping materials is dump‐
ing sand into a conical pile. The sand is being poured at
a rate of 5ft3/sec; the physical properties of the sand, in
conjunction with gravity, ensure that the cone’s height is
roughly 2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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4.2 Optimization

4.2 Optimization
In Section 3.1 we learned about extreme values — the largest and smallest val‐
ues a function attains on an interval. We motivated our interest in such values
by discussing how it made sense to want to know the highest/lowest values of
a stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

Watch the video:
Optimization Problem #7 —Minimizing the Area
of Two Squares With Total Perimeter of Fixed
Length at
https://youtu.be/BbTwa4Dbmmo

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.2.1 Optimization: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

x

y

x

y

Figure 4.2.1: A sketch of the enclosure in
Example 4.2.1.

SOLUTION One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched twice
in Figure 4.2.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area function— after
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with 2 variables; we need to
reduce this down to a single variable. We know more about the situation: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equation:

Perimeter = 100 = 2x+ 2y.

Notes:
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We now have 2 equations and 2 unknowns. In the latter equation, we solve
for y:

y = 50− x.

Now substitute this expression for y in the area equation:

Area = A(x) = x(50− x).

Note we now have an equation of one variable; we can truly call the Area a
function of x.

This function onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negative
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the critical points, we take the derivative of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only critical point. We evaluate
A(x) at the endpoints of our interval and at this critical point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625 ft2. This is the max‐
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 ft. with maxi‐
mum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de‐
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi‐variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi‐
ples here will provide a good foundation for the mathematics you will likely en‐
counter later.

We outline here the basic process of solving these optimization problems.

Notes:
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Key Idea 4.2.1 Solving Optimization Problems

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We’ll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari‐
able function using substitutions derived from the other equa‐
tions.

4. Identify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do‐
main.

6. Identify the values of all relevant quantities of the problem.

We will use Key Idea 4.2.1 in a variety of examples.

x

y

x

y

Figure 4.2.2: A sketch of the enclosure in
Example 4.2.2.

Example 4.2.2 Optimization: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SOLUTION We will follow the steps outlined by Key Idea 4.2.1.

1. We aremaximizing area. A sketch of the regionwill help; Figure 4.2.2 gives
two sketches of the proposed enclosed area. A key feature of the sketches
is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

Notes:
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This is our fundamental equation. This defines area as a function of two
variables, so we need another equation to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equation to a single variable. In the
perimeter equation, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a function of one variable.

4. We want the area to be nonnegative. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The latter inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We now find the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the critical points. We have A′(x) = 50 − x; setting this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50−x/2; thus y = 25. Thus our rectangle will have two
sides of length 25 and one side of length 50, with a total area of 1250 ft2.

Keep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a systemof equations. These equations
allow us to write a certain quantity as a function of one variable, which we then
optimize.

5000 ft

1000 ft

Figure 4.2.3: Running a power line from
the power station to an offshore facility
with minimal cost in Example 4.2.3.

Example 4.2.3 Optimization: minimizing cost
A power line needs to be run from a power station located on the beach to an
offshore facility. Figure 4.2.3 shows the distances between the power station to
the facility.

It costs $50/ft. to run a power line along the land, and $130/ft. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

Notes:
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SOLUTION We will follow the strategy of Key Idea 4.2.1 implicitly, with‐
out specifically numbering steps.

There are two immediate solutions that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecting the two locations with a straight line. However, this requires
that all the wire be laid underwater, the most costly option. Second, we could
minimize the underwater length by running a wire all 5000 ft. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non‐minimal cost.

The optimal solution likely has the line being run along the ground for awhile,
then underwater, as the figure implies. We need to label our unknown distances
— the distance run along the ground and the distance run underwater. Recog‐
nizing that the underwater distance can be measured as the hypotenuse of a
right triangle, we choose to label the distances as shown in Figure 4.2.4.

5000 − x x

1000 ft√ x2 +
100

02

Figure 4.2.4: Labeling unknown dis‐
tances in Example 4.2.3.

By choosing x as we did, we make the expression under the square root sim‐
ple. We now create the cost function.

Cost = land cost + water cost
= $50× land distance + $130× water distance
= 50(5000− x) + 130

√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This function only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we still evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the critical points of c(x). We compute c ′(x) as

c ′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Setting c ′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)

Notes:
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1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

=
1250
3

≈ 416.67.

Evaluating c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 ft., and the under‐
water distance is

√
416.672 + 10002 ≈ 1083 ft.

h

r

Figure 4.2.5: A sketch for Example 4.2.4.

Example 4.2.4 Optimization: Minimizing Surface Area
Design a closed cylindrical can of volume 8 ft3 so that it uses the least amount
of metal. In other words, minimize the surface area of the can. Following the
strategy of Key Idea 4.2.1, we make a sketch in Figure 4.2.5 and identify the
quantity to be minimized as the surface area of the cylinder. The formula for
the surface area is our fundamental equation since it relates all of our relevant
quantities.

A = πr2︸︷︷︸
Top

+ πr2︸︷︷︸
Bottom

+ 2πrh︸︷︷︸
Side

= 2πr2 + 2πrh

Our surface area is now defined in terms of two variables. To reduce this to
a single variable we use the volume of a can, V = πr2h. Since the can must have
V = 8 ft3, we set πr2h = 8. Thus h =

8
πr2

and

A(r) = 2πr2 + 2πr
8
πr2

= 2πr2 +
16
r

Next we find the critical points of A(r). We compute

A′(r) = 4πr− 16
r2

=
4πr3 − 16

r2

and find that A′(r) = 0 when r3 =
4
π
, that is, r =

(
4
π

)1/3

≈ 1.08 ft.

Looking back at A(r), we notice that r is not restricted to a closed interval.
The radius can take on any positive value making the interval of optimization

Notes:
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(0,∞). Sincewedonot have endpoints to test inA(r)we considerwhat happens
to A(r) as r approaches the endpoints of (0,∞). We see that

A(r) → ∞ as r → ∞ (because of the r2 term) and

A(r) → ∞ as r → 0 (because of the
16
r

term)

Thus, the surface area must be minimized at the critical point we found. Finally,
we determine the height of the cylinder.

h =
8
πr2

=
8
π
r−2 = 2

(
4
π

)(
4
π

)−2/3

= 2
(
4
π

)1/3

≈ 2.17 ft.

Notice that the height is twice the length of the radius. This means that the
surface area is minimized when the can is as tall as it is wide.

In the exercises you will see a variety of situations that require you to com‐
bine problem‐solving skills with calculus. Focus on the process; learn how to
form equations from situations that can bemanipulated into what you need. Es‐
chew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next section introduces another application of the derivative: differen‐
tials. Given y = f(x), they offer a method of approximating the change in y after
x changes by a small amount.

Notes:
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Exercises 4.2
Terms and Concepts
1. T/F: An “optimization problem” is essentially an “extreme

values” problem in a “story problem” setting.
2. T/F: This section teaches one to find the extreme values of

a function that has more than one variable.

Problems
3. Find the maximum product of two numbers (not necessar‐

ily integers) that have a sum of 100.
4. Find the minimum sum of two positive numbers whose

product is 500.
5. Find the maximum sum of two positive numbers whose

product is 500.
6. Find the maximum sum of two numbers, each of which is

in [0, 300] whose product is 500.
7. Find the maximal area of a right triangle with hypotenuse

of length 1.
8. A rancher has 1000 feet of fencing in which to construct ad‐

jacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min‐
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau‐
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimization in mind?

11. The United States Postal Service charges more for box‐
es whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross section, i.e., 2w+ 2h).
What is the maximum volume of a package with a square
cross section (w = h) that does not exceed the 108” stan‐
dard?

12. The strength S of a wooden beam is directly proportional
to its cross sectional width w and the square of its height
h; that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man‐
ner described in Example 4.2.3. The offshore facility is 2
miles at sea and 5 miles along the shoreline from the pow‐
er plant. It costs $50,000 per mile to lay a power line un‐
derground and $80,000 to run the line underwater.
How much of the power line should be run underground
to minimize the overall costs?

14. A power line is to be run to an offshore facility in the man‐
ner described in Example 4.2.3. The offshore facility is 5
miles at sea and 2 miles along the shoreline from the pow‐
er plant. It costs $50,000 per mile to lay a power line un‐
derground and $80,000 to run the line underwater.
How much of the power line should be run underground
to minimize the overall costs?

15. A woman throws a stick into a lake for her dog to fetch; the
stick is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa‐
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.
How far along the shore should the dog run to minimize
the time it takes to get to the stick? (Hint: the figure from
Example 4.2.3 can be useful.)

16. A woman throws a stick into a lake for her dog to fetch; the
stick is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa‐
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.
How far along the shore should the dog run to minimize
the time it takes to get to the stick? (Google “calculus dog” to
learn more about a dog’s ability to minimize times.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?

18. Four squares are going to be cut from a larger square piece
of paper of side length 10 inches. After the paper is folded
into a topless box, what is the largest volume the box could
have?

19. The material to make the sides of a box costs 2 ¢/in2. Mak‐
ing the bottom costs 4 ¢/in2, while the top costs 1 ¢/in2.
What are the dimensions of the least expensive box with a
square base and a volume of 10 in3?

20. A box needs to have a surface area of 12 in2 and be twice
as long as it is wide. What is the largest volume the box can
have?
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4.3 Differentials
In Section 2.2 we explored the meaning and use of the derivative. This section
starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equation

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximations of f(x) for values of x
near c. (This tangent line is also called the linearization of f at c.)

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

0.5

1

π
3

√
3

2

x

y

(a)

0.87

0.88

0.89

π
3 1.1

√
3

2

ℓ(1.1) ≈ sin 1.1

sin 1.1

x

y

(b)

Figure 4.3.1: Graphing f(x) = sin x and
its tangent line at x = π/3 in order to
estimate sin 1.1.

In Figure 4.3.1(a), we see a graph of f(x) = sin x graphed along with its tan‐
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.3.1(b). In this figure, we see how we are approximating sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximation this is.)

We now generalize this concept. Given f(x) and an x‐value c, the tangent
line is ℓ(x) = f ′(c)(x− c) + f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
representing a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a function approximates well the values of that function
near x = c.

As the x value changes from c to c + ∆x, the y value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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Replacing f(c+∆x) with its tangent line approximation, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3.1)

This final equation is important; we’ll come back to it in Key Idea 4.3.1.
We introduce two new variables, dx and dy in the context of a formal defini‐

tion.

Definition 4.3.1 Differentials of x and y.
Let y = f(x) be differentiable. The differential of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ‐
ential of y, denoted dy, is

dy = f ′(x) dx.

We can solve for f ′(x) in the above equation: f ′(x) = dy/ dx. This states
that the derivative of f with respect to x is the differential of y divided by the
differential of x; this is not the alternate notation for the derivative, dy

dx . This
latter notationwas chosen because of the fraction‐like qualities of the derivative,
but again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place and an
accompanying figure.

dx = ∆x

}
dy

∆y

x

y

Figure 4.3.2: The distances involved in
Key Idea 4.3.1.

Key Idea 4.3.1 Differential Notation
Let y = f(x) be a differentiable function.

1. ∆x represents a small, nonzero change in x value.

2. dx represents a small, nonzero change in x value (i.e.,∆x = dx).

3. ∆y is the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. dy = f ′(x) dx which, by Equation (4.3.1), is an approximation of
the change in y value as x changes by∆x; dy ≈ ∆y.

Notes:
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What is the value of differentials? Like many mathematical concepts, differ‐
entials provide both practical and theoretical benefits. We explore both here.

Watch the video:
Differentials 2 at
https://youtu.be/AvM8-LUdg84

Example 4.3.1 Finding and using differentials
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

SOLUTION The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3) dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differential to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula‐
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximation is really good!)

So why bother?
In “most” real life situations, we do not know the function that describes

a particular behavior. Instead, we can only take measurements of how things
change — measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How‐
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials

Notes:
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allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen‐
tial Equations courses.

We use differentials once more to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques
can sometimes be used to easily compute something that looks rather hard.

Example 4.3.2 Using differentials to approximate a function value
Approximate

√
4.5.

SOLUTION We expect
√
4.5 ≈ 2, yet we can do better. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differentials,

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125.

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as∫

f(x) dx

quite often. While we don’t discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practice finding differentials in general.

Example 4.3.3 Finding differentials
In each of the following, find the differential dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√

x2 + 3x− 1

SOLUTION

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x) dx.

Notes:
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2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.
We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3) dx

2
√
x2 + 3x− 1

.

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f; we justmultiply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method of
making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x+∆x (where we hope
∆x is small). This measurement of xmay be used to compute some other value;
we can think of this as f(x) for some function f. As the true length is x + ∆x,
one really should have computed f(x + ∆x). The difference between f(x) and
f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values;

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differentials.

Example 4.3.4 Using differentials to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu‐
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, estimate the propagated error in the mass
of the ball bearing.

SOLUTION Themass of a ball bearing is found using the equation “mass
= volume× density.” In this situation themass function is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differential of the mass is

dm = 31.4πr2 dr.

Notes:
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Chapter 4 Applications of the Derivative

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm
= 31.4π(1)2(±0.005)
= ±0.493g

Is this error significant? It certainly depends on the application, but we can get
an idea by computing the relative error. The ratio between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the samemanufacturing tolerance would give a propagat‐
ed error in mass of ±12.33g, which corresponds to a percent error of ±0.19%.
While the amount of error is much greater (12.33 > 0.493), the percent error is
much lower.

Notes:
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Exercises 4.3
Terms and Concepts

1. T/F: Given a differentiable function y = f(x), we are gener‐
ally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con‐
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con‐
cept.

4. T/F: Differentials are important in the study of integration.

5. How are differentials and tangent lines related?

6. T/F:In real life, differentials are used to approximate func‐
tion values when the function itself is not known.

Problems

In Exercises 7–16, use differentials to approximate the given
value by hand.

7. 2.052

8. 5.932

9. 5.13

10. 6.83

11.
√
16.5

12.
√
24

13. 3√63

14. 3√8.5

15. sin 3

16. e0.1

In Exercises 17–30, compute the differential dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. y = ln(sec x)

In Exercises 31–36, use the linear approximation (1 + x)k ≈
1+ kx to find an approximation for the function f(x) for values
of x near zero.

31. f(x) = (1− x)6

32. f(x) = 2
1− x

33. f(x) = 1√
1+ x

34. f(x) =
√
2+ x2

35. f(x) = (4+ 3x)1/3

36. f(x) = 3

√(
1− 1

2+ x

)2

Exercises 37–40 use differentials to approximate propagated
error

37. A set of plastic spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

38. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated
by dropping a rock and listening for it to hit the bottom.
What is the propagated error if the time measurement is
accurate to 2/10ths of a second and the measured time is:
(a) 2 seconds?
(b) 5 seconds?

39. What is the propagated error in the measurement of the
cross sectional area of a circular log if the diameter is mea‐
sured at 15′′, accurate to 1/4′′?

40. A wall is to be painted that is exactly 8′ high and is mea‐
sured to be 10′, 7′′ long. Find the propagated error in
the measurement of the wall’s surface area if the measure‐
ment of the length is accurate to 1/2′′.

Exercises 41–44 explore some issues related to surveying in
which distances are approximated using other measured dis‐
tances and measured angles. (Hint: Convert all angles to radi‐
ans before computing.)

41. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85.2◦, accurate to 1◦. Assume that the triangle formed
is a right triangle.

l =?

θ

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

42. Answer the questions of Exercise 41, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.
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43. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?
(b) What is the propagated error?
(c) What is the percent error?

44. Consider the setup in Exercise 43. This time, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?

45. Show that the linearization of f(x) = (1 + x)k at x = 0 is
L(x) = 1+ kx.
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4.4 Newton’s Method

4.4 Newton’s Method
Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar functions. Fortunately, there are methods that
can give us approximate solutions to equations like these. These methods can
usually give an approximation correct to as many decimal places as we like. In
Section 1.6 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.
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y
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x
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(b)
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1

x0 x1x2 x3
x

y

(c)

Figure 4.4.1: Demonstrating the geomet‐
ric concept behind Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x‐axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this x0. (See Figure 4.4.1(a).) Draw the tangent line to the graph
at (x0, f(x0)) and see where it meets the x‐axis. Call this point x1. Then repeat
the process — draw the tangent line to the graph at (x1, f(x1)) and see where
it meets the x‐axis. (See Figure 4.4.1(b).) Call this point x2. Repeat the process
again to get x3, x4, etc. This sequence of points will often converge rather quickly
to a root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equation of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x‐axis when y = 0, and the x‐value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equation:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximation xn, we can find the next approximation, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Notes:
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Chapter 4 Applications of the Derivative

Key Idea 4.4.1 Newton’s Method
Let f be a differentiable function on an interval I with a root in I. To app‐
roximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an initial approximation of the root. (This is
often done by looking at a graph of f.)

2. Create successive approximations iteratively; given an approxima‐
tion xn, compute the next approximation xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Note: Newton’s Method is not in‐
fallible. The sequence of approxi‐
mate values may not converge, or it
may converge so slowly that one is
“tricked” into thinking a certain ap‐
proximation is better than it actually
is. These issues will be discussed at
the end of the section.

Watch the video:
Newton’s Method at
https://youtu.be/1uN8cBGVpfs

Let’s practice Newton’s Method with a concrete example.

Example 4.4.1 Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places after
the decimal, using Newton’s Method and an initial approximation of x0 = 1.

SOLUTION To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the
Newton’s Method algorithm, outlined in Key Idea 4.4.1.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

Notes:
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4.4 Newton’s Method

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579,

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596,

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 iterations of Newton’s Method to find a root accurate to the
first 3 places after the decimal; our final approximation is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.
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Figure 4.4.2: A graph of f(x) = x3−x2−1
in Example 4.4.1.

A graph of f(x) is given in Figure 4.4.2. We can see from the graph that our
initial approximation of x0 = 1 was not particularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of initial calculation,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate initial approximation.

We can automate this process on a calculator that has an Ans key that re‐
turns the result of the previous calculation. Start by pressing 1 and then Enter.
(We have just entered our initial guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:
Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each timewe press the Enter key, we are finding the successive approximations,
x1, x2, …, and each one is getting closer to the root. In fact, once we get past
around x7 or so, the approximations don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pretty confident that we have found an accurate approximation.

We can use a similar approach in most spreadsheet programs, which intelli‐
gently copy formulas. Start by entering 1 in cell A1. Then in cell A2, enter:

A1-(A1^3-A1^2-1)/(3*A1^2-2*A1)
Copy this cell, and paste it into A3. The spreadsheet will automatically change
A1 to A2, giving you the next approximation. Continue pasting this into A4, A5,
and so on. Each time we paste the formula, we are finding the successive ap‐
proximations, and each one is getting closer to the root.

Using a calculator in this manner makes the calculations simple; many itera‐
tions can be computed very quickly.

Notes:
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Chapter 4 Applications of the Derivative

Example 4.4.2 Using Newton’s Method to find where functions intersect
Use Newton’s Method to approximate a solution to cos x = x, accurate to 5
places after the decimal.

SOLUTION Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equations like f(x) = g(x). However, this is
not a problem; we can rewrite the latter equation as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. Written this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starting value, x0. Consider Figure 4.4.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is pretty close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)
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Figure 4.4.3: A graph of f(x) = cos x − x
used to find an initial approximation of
its root.

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can continue this way, but it is really best to automate this process. On a cal‐
culator with an Ans key, we would start by pressing 0.75, then Enter, inputting
our initial approximation. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

(In a spreadsheet, we would enter A1-(cos(A1)-A1)/(-sin(A1)-1) in A2.)
Repeatedly pressing the Enter key gives successive approximations. We

quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximations x2 and x3 did not differ for at least the first 5 places after
the decimal, so we could have stopped. However, using our calculator in the
manner described is easy, so finding x4 was not hard. It is interesting to see how
we found an approximation, accurate to asmany decimal places as our calculator
displays, in just 4 iterations.

If you know how to program, you can translate the following pseudocode

Notes:
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4.4 Newton’s Method

into your favorite language to perform the computation in this problem.

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break
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Figure 4.4.4: A graph of f(x) = x3−x2−1,
showing why an initial approximation of
x0 = 0 with Newton’s Method fails.

This code calculates x1, x2, etc., storing each result in the variable x. The
previous approximation is stored in the variable oldx. We continue looping until
the difference between two successive approximations, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method
What should one use for the initial guess, x0? Generally, the closer to the ac‐
tual root the initial guess is, the better. However, some initial guesses should
be avoided. For instance, consider Example 4.4.1 where we sought the root to
f(x) = x3− x2− 1. Choosing x0 = 0 would have been a particularly poor choice.
Consider Figure 4.4.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x‐axis.
Graphically, we see that Newton’s Method fails.

We can also see analytically that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

Adjusting the initial approximation x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.4.5.
It is clear that the root is x = 0, but let’s approximate this with x0 = 0.1.
Figure 4.4.5(a) shows graphically the calculation of x1; notice how it is farther
from the root than x0. Figures 4.4.5(b) and (c) show the calculation of x2 and x3,
which are even farther away; our successive approximations are getting worse.
(It turns out that in this particular example, each successive approximation is
twice as far from the true answer as the previous approximation.)
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Figure 4.4.5: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

Notes:
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Chapter 4 Applications of the Derivative

While Newton’s Method does not always work, it does work “most of the
time,” and it is generally very fast. Once the approximations get close to the root,
Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro‐
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

We first learned of the derivative in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the pow‐
er of the derivative by studying how it relates to the graph of a function (leading
to ideas of increasing/decreasing and concavity). This chapter has put the deriv‐
ative to yet more uses:

• Related Rates (furthering our use of the derivative to find instantaneous
rates of change)

• Optimization (applied extreme values), and

• Differentials (useful for various approximations and for something called
integration).

• Equation solving (Newton’s Method)

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f, can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applica‐
tions.

Notes:

216



Exercises 4.4
Terms and Concepts
1. T/F: Given a function f(x), Newton’s Method produces an

exact solution to f(x) = 0.
2. T/F: In order to get a solution to f(x) = 0 accurate to d

places after the decimal, at least d + 1 iterations of New‐
ton’s Method must be used.

Problems
In Exercises 3–8, the roots of f(x) are knownor are easily found.
Use 5 iterations of Newton’s Method with the given initial ap‐
proximation to approximate the root. Compare it to the known
value of the root.

3. f(x) = cos x, x0 = 1.5
4. f(x) = sin x, x0 = 1
5. f(x) = x2 + x− 2, x0 = 0
6. f(x) = x2 − 2, x0 = 1.5
7. f(x) = ln x, x0 = 2
8. f(x) = x3 − x2 + x− 1, x0 = 1

In Exercises 9–12, use Newton’s Method to approximate all
roots of the given functions accurate to 3 places after the dec‐
imal. If an interval is given, find only the roots that lie in that
interval. Use technology to obtain good initial approximations.

9. f(x) = x3 + 5x2 − x− 1
10. f(x) = x4 + 2x3 − 7x2 − x+ 5
11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)
12. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 13–16, use Newton’s Method to approximate
when the given functions are equal, accurate to 3 places after
the decimal. Use technology to obtain good initial approxima‐
tions.

13. f(x) = x2, g(x) = cos x

14. f(x) = x2 − 1, g(x) = sin x

15. f(x) = ex
2
, g(x) = cos x+ 1

16. f(x) = x, g(x) = tan x on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?

In Exercises 19–22, use Newton’s Method to approximate the
given value.

19.
√
16.5.

20.
√
24.

21. 3√63.

22. 3√8.5.

23. Show graphically what happens when Newton’s Method is
used at different x0 for the function shown.

(a) x0 = 0
(b) x0 = 1
(c) x0 = 3
(d) x0 = 4
(e) x0 = 5 −2 2 4 6

−2

−1

1

2

x

y

24. If we need to calculate c−1/2 quickly (for example, in doing
computer graphics), one possible approach is to use New‐
ton’s Method. Show that c−1/2 is a root of f(x) = x−2 − c.
According to Newton’s Method, what is xn+1 in terms of xn
and c for this f? (You can read theWikipedia article on Fast
Inverse Square Root for even more details.)
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5: INTEGRATION

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute areas, volumes, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration
Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y ′ = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come up with at least one solution: y = x2. “Find‐

ing another” may have seemed impossible until one realizes that a function like
y = x2 + 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x2+123,456,789 also has a derivative
of 2x. The differential equation y ′ = 2x has many solutions. This leads us to
some definitions.

Definition 5.1.1 Antiderivatives
Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F ′(x) = f(x).

We refer to an antiderivative of f, as opposed to the antiderivative of f, since
antiderivatives are not unique. We often use upper‐case letters to denote anti‐
derivatives.

Notes:

219



Chapter 5 Integration

Theorem 5.1.1 Antiderivative Forms
Let F(x) and G(x) be antiderivatives of f(x) on an interval. Then there
exists a constant C such that

G(x) = F(x) + C.

Proof
Suppose that a and b are two distinct points in the interval. Then by applying
theMean Value Theorem to the function G(x)−F(x), there is a point c between
a and b so that

(G(b)−F(b))−(G(a)−F(a)) = (G′(c)−F′(c))(b−a) = (f(c)−f(c))(b−a) = 0.

Because this holds for any a and b in the interval, G(b)− F(b) is constant for all
possible b. □

Given a function f and one of its antiderivatives F, we know all antiderivatives
of f have the form F(x) + C for some constant C.

Definition 5.1.2 Indefinite Integrals
The set of all antiderivatives of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Using Definitions 5.1.1 and 5.1.2, we can say that on an interval∫
f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notation.

∫
f(x) dx = F(x) + C

Integrand

Integration
symbol

Differential
of x

One
antiderivative

Constant of
integration

Notes:
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5.1 Antiderivatives and Indefinite Integration

The integration symbol,
∫
, is in reality an “elongated S,” representing “take the

sum.” We will later see how sums and antiderivatives are related.
The function we want to find an antiderivative of is called the integrand. It

contains the differential of the variable we are integratingwith respect to. The
∫

symbol and the differential dx are not “bookends”with a function sandwiched in
between; rather, the symbol

∫
means “find all antiderivatives of what follows,”

and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.

Example 5.1.1 Evaluating indefinite integrals
Evaluate

∫
sin x dx.

SOLUTION We are asked to find all functions F(x) such that F ′(x) =
sin x. Some thought will lead us to one solution: F(x) = − cos x, because
d
dx (− cos x) = sin x.

The indefinite integral of sin x is thus − cos x, plus a constant of integration.
So: ∫

sin x dx = − cos x+ C.

A commonly asked question is “What happened to the dx?” The unenlight‐
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

Note: Recall from Definition 4.3.1
that dx is any nonzero real number
and dy = f ′(x) dx.

This process of antidifferentiation is really solving a differential question. The
integral ∫

sin x dx

presents us with a differential, dy = sin x dx. It is asking: “What is y?” We found
lots of solutions, all of the form y = − cos x+ C.

Letting dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find antider‐
ivatives of more complicated functions. In this section, we will simply explore
the rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Notes:
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Example 5.1.2 Evaluating indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

SOLUTION We seek a function F(x) whose derivative is 3x2 + 4x + 5.
When taking derivatives, we can consider functions term‐by‐term, so we can
likely do that here.

What functions have a derivative of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what functions have a derivative of 5? Functions of the form 5x+C3,
where C3 is a constant.

Our answer appears to be∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of∫

(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivative of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

Differentiation “undoes” the work done by antidifferentiation.
Theorem 2.6.1 gave a list of the derivatives of common functions we had

learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.

Notes:

222



5.1 Antiderivatives and Indefinite Integration

Theorem 5.1.2 Derivatives and Antiderivatives
1. d

dx
(
cf(x)

)
= c · f ′(x)

2. d
dx
(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx
(
C
)
= 0

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

We highlight a few important points from Theorem 5.1.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant Multiple

Rule: we can temporarily ignore constants when finding antiderivatives,
just as we did when computing derivatives (i.e., d

dx
(
3x2
)
is just as easy to

compute as d
dx
(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being multiplied by 5,
but “5 times a constant” is still a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Exam‐
ple 5.1.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In practice we generally do not write out all these steps, but we demon‐
strate them here for completeness.

Notes:
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Theorem 5.1.3 Derivatives and Antiderivatives
Common Derivatives

4. d
dx
(
xn
)
= n · xn−1

5. d
dx
(
ln |x|

)
= 1

x

6. d
dx
(
ex
)
= ex

7. d
dx
(
sin x

)
= cos x

8. d
dx
(
cos x

)
= − sin x

9. d
dx
(
tan x

)
= sec2 x

10. d
dx
(
cot x

)
= − csc2 x

11. d
dx
(
sec x

)
= sec x tan x

12. d
dx
(
csc x

)
= − csc x cot x

Common Indefinite Integrals

4.
∫
xn dx = xn+1

n+1 + C (n ̸= −1)

5.
∫ 1

x dx = ln |x|+ C

6.
∫
ex dx = ex + C

7.
∫
cos x dx = sin x+ C

8.
∫
sin x dx = − cos x+ C

9.
∫
sec2 x dx = tan x+ C

10.
∫
csc2 x dx = − cot x+ C

11.
∫
sec x tan x dx = sec x+ C

12.
∫
csc x cot x dx = − csc x+ C

• Rule #4 is the Power Rule of indefinite integration. There are two impor‐
tant things to keep in mind:

1. Notice the restriction that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #5.
2. We are presenting antidifferentiation as the “inverse operation” of

differentiation. Here is a useful quote to remember:
“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an‐
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #5 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems
In Section 2.3 we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity functiondescribes acceleration. We can

Notes:
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5.1 Antiderivatives and Indefinite Integration

now go “the other way:” the antiderivative of an acceleration function gives a
velocity function, etc. While there is just one derivative of a given function, there
are infinite antiderivatives. Therefore we cannot ask “What is the velocity of an
object whose acceleration is−32ft/s2?”, since there is more than one answer.

Watch the video:
Antiderivatives: Acceleration, Velocity, Position
Functions — AWord Problem at
https://youtu.be/brNADtx8Qu8

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 5.1.3 Solving initial value problems
The acceleration due to gravity of a falling object is −32 ft/s2. At time t = 3,
a falling object had a velocity of −10 ft/s. Find the equation of the object’s
velocity.

SOLUTION We want to know a velocity function, v(t). We know two
things:

• The acceleration, i.e., v ′(t) = −32, and

• the velocity at a specific time, i.e., v(3) = −10.

Using the first piece of information, we know that v(t) is an antiderivative of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:

v(t) =
∫
(−32) dt = −32t+ C.

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

Notes:
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When did the object begin moving down? Immediately after v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 5.1.4 Solving initial value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SOLUTION We start by finding f ′(t), which is an antiderivative of f ′′(t):

f ′(t) =
∫

f ′′(t) dt =
∫

cos t dt = sin t+ C.

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the initial value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integrating again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva‐
tive(s). For instance, we found a position function given a velocity function.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, wewill see how areas and antiderivatives are closely tied together.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “antiderivative” in your own words.
2. Is it more accurate to refer to “the” antiderivative of f(x) or

“an” antiderivative of f(x)?
3. Use your ownwords to define the indefinite integral of f(x).
4. Fill in the blanks: “Inverse operations do the

things in the order.”
5. What is an “initial value problem”?
6. The derivative of a position function is a func‐

tion.
7. The antiderivative of an acceleration function is a

function.
8. If F(x) is an antiderivative of f(x), and G(x) is an antideriv‐

ative of g(x), give an antiderivative of f(x) + g(x).

Problems
In Exercises 9–42, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1
3t2

dt

14.
∫

3
t2

dt

15.
∫

1√
x
dx

16.
∫

sec2 θ dθ

17.
∫

sin θ dθ

18.
∫

(sec x tan x+ csc x cot x) dx

19.
∫

5eθ dθ

20.
∫

et

2
dt

21.
∫

(2t+ 3)2 dt

22.
∫

(t2 + 3)(t3 − 2t) dt

23.
∫

x2x3 dx

24.
∫

eπ dx

25.
∫

3
x4

dx

26.
∫

4x5 − 7
x3

dx

27.
∫ √

x7 dx

28.
∫

x3 − 7x√
x

dx

29.
∫

5− 2
3
x2 + 3

4
x3 dx

30.
∫

u6 − 2u5 − u3 + 2
7
du

31.
∫

(u+ 4)(2u+ 1) du

32.
∫ √

t(t2 + 3t+ 2) dt

33.
∫

1+
√
x+ x√
x

dx

34.
∫

sin2 x+ cos2 x dx

35.
∫

2+ tan2 θ dθ

36.
∫

sec t(sec t+ tan t) dt

37.
∫

1− sin2 t
sin2 t

dt

38.
∫

sin 2x
sin x

dx

39.
∫

4+ 6u√
u

du

40.
∫

sin θ + sin θ tan2 θ
sec2 θ

dθ

41.
∫

2+ t
3√t2

dt

42.
∫

4√x5 + 5√x4 dx

In Exercises 43–52, find f(x) described by the given initial value
problem.

43. f ′(x) = sin x and f(0) = 2
44. f ′(x) = 5ex and f(0) = 10
45. f ′(x) = 4x3 − 3x2 and f(−1) = 9
46. f ′(x) = sec2 x and f(π/4) = 5
47. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10
48. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5
49. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4
50. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

51. f ′(x) = −2
x3

and f(1) = 2

52. f ′(x) = 1√
x
and f(4) = 0
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53. This problem investigates why Theorem 5.1.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x

)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of antideriv‐
atives, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

54. An object is moving so that its velocity at time t is given by
v(t) = 3

√
t. If the object was at the origin at time t = 0,

find it’s position s(t) at time t.

55. A nickel dropped from the top of the North Dakota State
Capital Building has acceleration a(t) = −32 ft/sec2 (ig‐
noring air resistance), initial velocity v(0) = 0, and initial
height s(0) = 241.67 ft. How long will it take the nickel to
hit the ground?

56. Given the graph of f below, sketch the graph of the antider‐
ivative F of f that passes through the origin. What do the
graphs of the other antiderivatives of f look like?

2 4

2

4

x

y

57. Given the graph of f below, sketch the graph of the antider‐
ivative F of f that passes through the origin. What do the
graphs of the other antiderivatives of f look like?

2 4

−2

2

4

x

y

Review
58. Use information gained from the first and second deriva‐

tives to sketch f(x) = 1
ex + 1

.

59. Given y = x2ex cos x, find dy.
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 ft/s for 10 seconds. How far away from its starting point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa‐
tion. In this case, Distance = 5ft/s× 10s= 50 feet.

It is interesting to note that this solution of 50 feet can be represented graph‐
ically. Consider Figure 5.2.1, where the constant velocity of 5ft/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

5 10

5

t (s)

v (ft/s)

Figure 5.2.1: The area under a constant
velocity function corresponds to distance
traveled.

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5ft/s for 10 seconds,
then instantly reverses course at a rate of 2ft/s for 4 seconds. (Since the object
is traveling in the opposite direction when reversing course, we say the velocity
is a constant−2ft/s.) How far away from the starting point is the object —what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 ft.

Hence the object is 42 feet from its starting location.
We can again depict this situation graphically. In Figure 5.2.2 we have the

velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis‐
placement of the object is

“Area above the t‐axis − Area below the t‐axis,”

which is easy to calculate as 50− 8 = 42 feet.

5 10 15
−2

5

t (s)

v (ft/s)

Figure 5.2.2: The total displacement is
the area above the t‐axis minus the area
below the t‐axis.

Now consider a more difficult problem.

Example 5.2.1 Finding position using velocity
The velocity of an object moving straight up/down under the acceleration of
gravity is given as v(t) = −32t+48, where time t is given in seconds and velocity
is in ft/s. When t = 0, the object had a height of 0 ft.

1. What was the initial velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at time t = 2?

SOLUTION It is straightforward to find the initial velocity; at time t = 0,
v(0) = −32 · 0+ 48 = 48 ft/s.

Notes:
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To answer questions about the height of the object, we need to find the
object’s position function s(t). This is an initial value problem, which we studied
in the previous section. We are told the initial height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):

s(t) =
∫

v(t) dt =
∫

(−32t+ 48) dt = −16t2 + 48t+ C.

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the critical points of s by
setting its derivative equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(Notice how we ended up just finding when the velocity was 0ft/s.) The first
derivative test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36ft.

The height at time t = 2 is now straightforward to compute: it is s(2) = 32ft.

While we have answered all three questions, let’s look at them again graph‐
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straightforward to find v(0). How can we use the graph to find the maximum
height of the object?

1 2 3

−50

50

t (s)

v (ft/s)

Figure 5.2.3: A graph of v(t) = −32t +
48; the shaded areas help determine
displacement.

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t‐axis that is below the
t‐axis counted as “negative” area. That is, it represents the object coming back
toward its starting position. So to find the maximum distance from the starting
point — the maximum height — we find the area under the velocity line that is
above the t‐axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48ft/s = 36ft,

which matches our previous calculation of the maximum height.
Finally, to find the height of the object at time t = 2, we calculate the total

signed area under the velocity function from t = 0 to t = 2. This signed area is
equal to s(2), the displacement (i.e., signed distance) from the starting position
at t = 0 to the position at time t = 2. That is,

Displacement = Area above the t‐axis− Area below t‐axis.

Notes:
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5.2 The Definite Integral

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48ft/s)− 1

2
(.5s)(16ft/s) = 32ft.

This also matches our previous calculation of the height at t = 2.
Notice howweanswered each question in this example in twoways. Our first

methodwas tomanipulate equations using our understanding of antiderivatives
and derivatives. Our second method was geometric: we answered questions
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relationship between area under a ve‐
locity function and displacement, but it does indicate that there may be a rela‐
tionship. Section 5.4 will fully establish fact that the area under a velocity func‐
tion is displacement.

While Figure 5.2.2 shows the graph of a function that has a jump disconti‐
nuity, we will now focus on functions that are continuous. Given a graph of a
continuous function y = f(x), we will find that there is great use in computing
the area between the curve y = f(x) and the x‐axis. Because of this, we need
to define some terms. The total signed area from x = a to x = b under a
continuous function f is

(area under f and above the x‐axis on [a, b])−
(area above f and under the x‐axis on [a, b]).

Definition 5.2.1 The Definite Integral
Let y = f(x) be continuous on a closed interval [a, b]. The definite inte‐
gral of f on [a, b] is the total signed area of f on [a, b], denoted∫ b

a
f(x) dx,

where a and b are the bounds of integration.

By our definition, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which is related to
antiderivatives. We have now defined the definite integral, which relates to ar‐
eas under a curve. The two are very much related, as we’ll see when we learn

Notes:
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the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f.

We practice using this notation.

Example 5.2.2 Evaluating definite integrals
Consider the function f given in Figure 5.2.4. Find:

1 2 3 4 5

−1

1

x

y

Figure 5.2.4: A graph of f(x) in Exam‐
ple 5.2.2.

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SOLUTION

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

∫ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x‐axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x‐axis, this is
“negative area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under f on [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.

Again, the region is a triangle, with height 5 times that of the height of the
original triangle. Thus the area is

∫ 3
0 5f(x) dx = 15/2 = 7.5.

1 2 3 4 5

−5

5

x

y

Figure 5.2.5: A graph of 5f in Exam‐
ple 5.2.2. (Yes, it looks just like the graph
of f in Figure 5.2.4, just with a different
y‐scale.)

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properties of the definite integral, given
in Theorem 5.2.1.

So far, when we have computed a definite integral
∫ b
a f(x) dx, we have re‐

quired that a ≤ b. In practice, it is sometimes convenient to be able to compute∫ b
a f(x) dx for a > b. To do so, we introduce the convention that for any a and

Notes:
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5.2 The Definite Integral

b,
∫ b
a f(x) dx = −

∫ a
b f(x) dx. It will be clear why this makes sense after we intro‐

duce Riemann sums.

Theorem 5.2.1 Properties of the Definite Integral
Let f and g be continuous on a closed interval I that contains the values
a, b, and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

3.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

4.
∫ b

a
(f(x)± g(x)) dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We will justify these properties after introducing Riemann sums. For now,
we note that properties 1 and 5 are illustrated in Example 5.2.2 and property 2
is our convention from above. To see why property 3makes sense geometrically,
consider the figure below:

a b c

x

y

Property 3 says that the total area under this curve should be the sum of the
area under the curve from a to b and the area under the curve from b to c.

What if the picture were like the following?

Notes:
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a c b

x

y

Then we have ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

and we can apply property 2.∫ c

a
f(x) dx =

∫ b

a
f(x) dx−

∫ b

c
f(x) dx, so property 2 yields∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx

Example 5.2.3 Evaluating definite integrals using Theorem 5.2.1.
Consider the graph of a function f(x) shown in Figure 5.2.6. Answer the follow‐
ing:

a b c
x

y

Figure 5.2.6: A graph of a function in Ex‐
ample 5.2.3.

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SOLUTION

1.
∫ b
a f(x) dx has a positive value (since the area is above the x‐axis) whereas∫ c
b f(x) dx has a negative value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x‐axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Notice how the second integral has the bounds “reversed.” Therefore∫ b
c f(x) dx represents a positive number, greater than the area described
by the first definite integral. Hence

∫ b
c f(x) dx is greater.

Notes:
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5.2 The Definite Integral

The area definition of the definite integral allows us to use geometry to com‐
pute the definite integral of some simple functions.

Example 5.2.4 Evaluating definite integrals using geometry

(−2,−8)

(5, 6)

R1

R2

−2 2 5

−10

−5

5

10

x

y

(a)

−3 3

5

x

y

(b)

Figure 5.2.7: A graph of f(x) = 2x − 4
in (a) and f(x) =

√
9− x2 in (b), from

Example 5.2.4.

Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SOLUTION

1. It is always useful to sketch the function in the integrand, as shown in Fig‐
ure 5.2.7(a). We see we need to compute the areas of two regions, which
we have labeled R1 and R2. Both are triangles, so the area computation is
straightforward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x‐axis, hence it is counted as negative area (we
can think of the triangle’s height as being “−8”), so∫ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

Example 5.2.5 Understanding motion given velocity

11 11

38

−5

5

10

15

a b c
t (s)

y (ft/s)

Figure 5.2.8: A graph of a velocity in Ex‐
ample 5.2.5.

Consider the graph of a velocity function of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity function gives dis‐
placement. Find the maximum speed of the object and its maximum displace‐
ment from its starting position.

SOLUTION Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15ft/s.

Note: The displacement of the ob‐
ject is different from the distance
traveled since the object moves
backwards and forwards at different
times in this example. The displace‐
ment measures how far the object
is from where it started, without re‐
gard for how far it actually traveled
to get there.

At time t = 0, the displacement is 0; the object is at its starting position.
At time t = a, the object has moved backward 11 feet. Between times t =
a and t = b, the object moves forward 38 feet, bringing it into a position 27

Notes:
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feet forward of its starting position. From t = b to t = c the object is moving
backwards again, hence its maximum displacement is 27 feet from its starting
position.

We can also analyze the displacement by drawing the path of the particle’s
location as time varies, as in Figure 5.2.9.

0

16

−11

27

Figure 5.2.9: Number line for Example 5.2.5.
The object starts at the origin, and moves to the left with a negative velocity 11
units. It then reverses direction and moves to the right with a positive velocity
38 units, arriving at 27. Finally, it reverses direction again and moves to the left
with a negative velocity 11 units, ending at 26.

Watch the video:
Definite Integral as Area 2 — Breaking Up the Re‐
gion at
https://youtu.be/Z7uyQjcFSy4

1 2 3

5

10

x

y

Figure 5.2.10: What is the area below
y = x2 on [0, 3]? The region is not a
usual geometric shape.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.10, where a region below y = x2 is shaded.
What is its area? The function y = x2 is relatively simple, yet the shape it defines
has an area that is not simple to find geometrically.

In the next section we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems

In Exercises 5–10, a graph of a function f(x) is given. Using the
geometry of the graph, evaluate the definite integrals.

5.

y = −2x + 4

2 4

−4

−2

2

4

x

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

y = f(x)

1 2 3 4 5

−2

−1

1

2

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7. y = f(x)

1 2 3 4

2

4

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

y = x − 1

1 2 3 4
−1

1

2

3

x

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1)+ 1

)
dx

9.
f(x) =

√
4 − (x − 2)2

1 2 3 4

1

2

3

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx
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10.

f(x) = 3

5 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a
f(x) dx, where

0 ≤ a ≤ b ≤ 10

In Exercises 11–14, a graph of a function f(x) is given; the num‐
bers inside the shaded regions give the area of that region.
Evaluate the definite integrals using this area information.

11.

y = f(x)

59
11 21

1 2 3

−100

−50

50

x

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(a)
∫ 2

1
−3f(x) dx

(b)
∫ 2

0
|f(x)| dx

(c)
∫ 3

0
|f(x)| dx

12.

f(x) = sin(πx/2)4/π

4/π
1 2 3 4

−1

1

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
|f(x)| dx

(c)
∫ 4

0
|f(x)| dx

13.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
|f(x)| dx

(c)
∫ 1

0
|f(x)| dx

14.

f(x) = x2

1/3 7/3

1 2

1

2

3

4

x

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(a)
∫ 3

1
(x− 1)2 dx

(b)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 15–16, a graph of the velocity function of an object
moving in a straight line is given. Answer the questions based
on that graph.

15.

1 2 3

−1

1

2

t (s)

y (ft/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 3]?
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16.

1 2 3 4 5

1

2

3

t (s)

y (ft/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 5]?

17. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = −32t+ 64, where t is in seconds, from a height
of 48 feet.
(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?
(d) When will the object reach a height of 0? (Hint: find

when the displacement is−48ft.)

18. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = −32t+ 96, where t is in seconds, from a height
of 64 feet.
(a) What is the object’s initial velocity?
(b) When is the object’s displacement 0?
(c) How long does it take for the object to return to its

initial height?
(d) When will the object reach a height of 210 feet?

In Exercises 19–22, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

19.
∫ 2

0

(
f(x) + g(x)

)
dx

20.
∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

22. Find non‐zero values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 23–26, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

23.
∫ 3

0

(
s(t) + r(t)

)
dt

24.
∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

26. Find non‐zero values for a and b such that∫ 5

0

(
as(t) + br(t)

)
dt = 0

27. Show that for any realm and b > 0 we have∫ b

0
mx dx = 1

2
mb2.

28. Look at signed areas to show that for any continuous func‐
tion f and any a and b where a < b, we have that∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Review
In Exercises 29–32, evaluate the given indefinite integral.

29.
∫ (

x3 − 2x2 + 7x− 9
)
dx

30.
∫ (

sin x− cos x+ sec2 x
)
dx

31.
∫ ( 3√t+ 1

t2
+ 2t

)
dt

32.
∫ (

1
x
− csc x cot x

)
dx
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Chapter 5 Integration

5.3 Riemann Sums
In the previous section we defined the definite integral of a function on [a, b] to
be the signed area between the curve and the x‐axis. Some areas were simple
to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is exactly what we will do
here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2

on [0, 4]. What is the signed area of this region — i.e., what is
∫ 4

0
(4x− x2) dx?

1 2 3 4

1

2

3

4

x

y

Figure 5.3.1: A graph of f(x) = 4x − x2.
What is the area of the shaded region?

We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over‐approximation; we are including area in the rectangle
that is not under the parabola.

We have an approximation of the area, using one rectangle. How can we
refine our approximation tomake it better? The key to this section is this answer:
use more rectangles.

Let’s use 4 rectangles of equal width of 1. This partitions the interval [0, 4]
into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Left Hand Rule, the Right Hand Rule, and theMidpoint Rule. The Left Hand
Rule says to evaluate the function at the left‐hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the Left Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

RHR MPR LHR other

1 2 3 4

1

2

3

4

x

y

Figure 5.3.2: Approximating
∫ 4
0 (4x −

x2) dx using rectangles. The heights of
the rectangles are determined using
different rules.

The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the function at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap‐
proximating rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

Notes:
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5.3 Riemann Sums

The following example will approximate the value of
∫ 4

0
(4x − x2) dx using

these rules.

Example 5.3.1 Using the Left Hand, Right Hand and Midpoint Rules

Approximate the value of
∫ 4

0
(4x − x2) dx using the Left Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SOLUTION We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.3 we first see 4 rectangles drawn on f(x) = 4x − x2 using the Left
Hand Rule. (The areas of the rectangles are given in each figure.)

0 3 4 3
1 2 3 4

1

2

3

4

x

y

Left Hand Rule

3 4 3 0
1 2 3 4

1

2

3

4

x

y

Right Hand Rule

1.75 3.75 3.75 1.75
1 2 3 4

1

2

3

4

x

y

Midpoint Rule

Figure 5.3.3: Approximating
∫ 4
0 (4x −

x2) dx in Example 5.3.1.

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our Left Hand Rule
approximation:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.3.3 next shows 4 rectangles drawn under f using the Right Hand
Rule; note how the [3, 4] subinterval has a rectangle of height 0.

These rectangle seem to be the mirror image of those found with the Left
Hand Rule. (This is because of the symmetry of our shaded region.) Our approx‐
imation gives the same answer as before, though calculated a different way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.3.3 last shows 4 rectangles drawn under f using the Midpoint Rule.

This gives an approximation of
∫ 4

0
(4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximations of
∫ 4

0
(4x− x2) dx: 10 and 11.

Summation Notation
It is hard to tell at this moment which is a better approximation: 10 or 11? We
can continue to refineour approximationbyusingmore rectangles. The notation

Notes:
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Chapter 5 Integration

can become unwieldy, though, as we add up longer and longer lists of numbers.
We introduce summation notation to ameliorate this problem.

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
writing

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summation notation and write

9∑
i=1

ai

Lets analyze this notation.

9∑
i=1

ai.

i=index
of summation

lower
bound

upper
bound summand

summation
symbol

(an upper case
sigma)

Figure 5.3.4: Understanding summation notation.

The upper case sigma,
∑

, represents the term “sum.” The index of summa‐
tion in this example is i; any symbol can be used. By convention, the index takes
on only the integer values between (and including) the lower and upper bounds.

Let’s practice using this notation.

Example 5.3.2 Using summation notation
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the positive odd integers). Evaluate
the following summations:

1.
6∑

i=1
ai 2.

7∑
i=3

(3ai − 4) 3.
4∑

i=1
(ai)2

SOLUTION

1.
6∑

i=1
ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

Notes:
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5.3 Riemann Sums

2. Note the starting value is different than 1:

7∑
i=3

(3ai − 4)

= (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)
= 11+ 17+ 23+ 29+ 35
= 115.

3.
4∑

i=1
(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84

It might seem odd to stress a new, concise way of writing summations only
to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without
writing individual terms. Examples will follow.

Theorem 5.3.1 Properties of Summations

1.
n∑

i=1
c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1
ai =

n∑
i=m

ai

5.
n∑

i=1
i =

n(n+ 1)
2

6.
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

7.
n∑

i=1
i3 =

(
n(n+ 1)

2

)2

Note: In practice we will sometimes need variations on formulas 5, 6, and 7
above. For example, we note that

n∑
i=0

i = 0+ 1+ 2+ · · ·+ n = 0+
n∑

i=1
i = 0+

n(n+ 1)
2

=
n(n+ 1)

2
,

Notes:
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so we see that
n∑

i=0
i =

n(n+ 1)
2

.

Similarly, we find that

n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6
, and

n∑
i=0

i3 =
(
n(n+ 1)

2

)2

Example 5.3.3 Evaluating summations using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

6∑
i=1

ai =
6∑

i=1
(2i− 1).

SOLUTION

6∑
i=1

(2i− 1) =
6∑

i=1
2i−

6∑
i=1

(1) (Theorem 5.3.1(2))

=

(
2

6∑
i=1

i

)
−

6∑
i=1

(1) (Theorem 5.3.1(3))

= 2
(
6(6+ 1)

2

)
− 6 (Theorem 5.3.1(1,5))

= 2(21)− 6 = 36

We obtained the same answer without writing out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again
∫ 4

0
(4x− x2) dx. We will approximate this definite integral using

16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4. Before
doing so, it will pay to do some careful preparation.

Notes:
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5.3 Riemann Sums

0 1 2 3 4
x0 x4 x8 x12 x16

Figure 5.3.5: Dividing [0, 4] into 16 equal‐
ly spaced subintervals.

Figure 5.3.5 shows a number line of [0, 4] subdivided into 16 equally spaced
subintervals. We denote 0 as x0; we have marked the values of x4, x8, x12, and
x16. We could mark them all, but the figure would get crowded. While it is easy
to figure that x9 = 2.25, in general, we want a method of determining the value
of xi without consulting the figure. Consider:

xi = x0 + i∆x

starting
value

number of
subintervals

between x0 and xi

subinterval
size

So x9 = x0 + 9(4/16) = 9/4 = 2.25.

If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin‐
terval would have length∆x = 4/100 = 0.04. We could compute x31 as

x31 = x0 + 31(4/100) = 124/100 = 1.24.

(That was far faster than creating a sketch first.)

Given any subdivision of [0, 4], the first subinterval is [x0, x1]; the second is
[x1, x2]; the ith subinterval is [xi−1, xi].

When using the Left Hand Rule, the height of the ith rectangle will be f(xi−1).

When using the Right Hand Rule, the height of the ith rectangle will be f(xi).

When using the Midpoint Rule, the height of the ith rectangle will be f
(

xi−1+xi
2

)
.

Thus approximating
∫ 4

0
(4x− x2) dxwith 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

Left Hand Rule:
16∑
i=1

f(xi−1)∆x

Right Hand Rule:
16∑
i=1

f(xi)∆x

Midpoint Rule:
16∑
i=1

f
(
xi−1 + xi

2

)
∆x

Notes:
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Watch the video:
Calculating a Definite Integral Using Riemann
Sums — Part 1 at
https://youtu.be/gFpHHTxsDkI

Weuse these formulas in the next two examples. The following example lets
us practice using the Left Hand Rule and the summation formulas introduced in
Theorem 5.3.1.

Example 5.3.4 Approximating definite integrals using sums

Approximate
∫ 4

0
(4x−x2) dx using the Right Hand Rule and summation formulas

with 16 and 1000 equally spaced intervals.

SOLUTION Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi)∆x.

We have ∆x = 4/16 = 0.25, xi = 0 + i∆x = i∆x, and f(xi) = f(i∆x) =
4i∆x− i2∆x2. Using the summation formulas, we see:∫ 4

0
(4x− x2) dx

≈
16∑
i=1

f(xi)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(4i∆x− i2(∆x)2)∆x (from above)

=

16∑
i=1

(4i(∆x)2 − i2(∆x)3)

=

16∑
i=1

4i(∆x)2 −
16∑
i=1

i2(∆x)3 (Theorem 5.3.1(2))
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5.3 Riemann Sums

= 4(∆x)2
16∑
i=1

i− (∆x)3
16∑
i=1

i2 (*) (Theorem 5.3.1(3))

= 4
(
1
4

)2(
(16)(17)

2

)
−
(
1
4

)3(
(16)(17)(33)

6

)
(Theorem 5.3.1(5,6))

= 34− 187
8

=
85
8

= 10.625

1 2 3 4

1

2

3

4

x

y

Figure 5.3.6: Approximating
∫ 4
0 (4x −

x2) dx with the Right Hand Rule and 16
evenly spaced subintervals.

Wewere able to sum up the areas of 16 rectangles with very little computation.
In Figure 5.3.6 the function and the 16 rectangles are graphed. While some
rectangles over‐approximate the area, others under‐approximate the area by
about the same amount. Thus our approximate area of 10.625 is likely a fairly
good approximation.

Notice Equation (*); by changing the 16’s to 1000’s and changing the value
of ∆x to 4/1000 = 0.004, we can use the equation to sum up the areas of
1000 rectangles. We do so here, skipping from the original summand to the
equivalent of Equation (*) to save space.∫ 4

0
(4x− x2) dx

≈
1000∑
i=1

f(xi)∆x

= 4(∆x)2
1000∑
i=1

i− (∆x)3
1000∑
i=1

i2

= 4(.004)2
(
(1000)(1001)

2

)
− (0.004)3

(
(1000)(1001)(2001)

6

)
= 10.666656

Using many, many rectangles, we likely have a good approximation:∫ 4

0
(4x− x2) dx ≈ 10.666656.

Before the above example, we statedwhat the summations for the LeftHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and
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2. each rectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rec‐
tangle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.

One could partition an interval [a, b]with subintervals that did not have the same
size. We refer to the length of the first subinterval as∆x1, the length of the sec‐
ond subinterval as∆x2, and so on, giving the length of the i th subinterval as∆xi.
Also, one could determine each rectangle’s height by evaluating f at any point in
the i th subinterval. We refer to the point picked in the first subinterval as c1, the
point picked in the second subinterval as c2, and so on, with ci representing the
point picked in the i th subinterval. Thus the height of the i th subinterval would
be f(ci), and the area of the i th rectangle would be f(ci)∆xi.

Summations of rectangleswith area f(ci)∆xi are named aftermathematician
Georg Friedrich Bernhard Riemann, as given in the following definition.

Definition 5.3.1 Riemann Sum
Let f be defined on the closed interval [a, b] and let P be a partition of
[a, b], with

a = x0 < x1 < · · · < xn−1 < xn = b.

Let∆xi denote the length of the i th subinterval [xi−1, xi] and let ci denote
any value in the i th subinterval. The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

1 2 3 4

1

2

3

4

x

y

Figure 5.3.7: An example of a general
Riemann sum to approximate

∫ 4
0 (4x −

x2) dx.

In Figure 5.3.7, we see the approximating rectangles of a Riemann sum of∫ 4

0
(4x − x2) dx. While the rectangles in this example do not approximate well

the shaded area, they demonstrate that the subinterval widthsmay vary and the
heights of the rectangles can be determined without following a particular rule.

Usually, Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construction makes computations easier.
We have ∆xi = ∆x =

b− a
n

and the i th term of the partition is xi = a + i∆x.
Then the Left Hand Rule uses ci = xi−1, the Right Hand Rule uses ci = xi, and
the Midpoint Rule uses ci =

xi−1 + xi
2

.
Let’s do another example.
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Example 5.3.5 Approximating definite integrals with sums

Approximate
∫ 3

−2
(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SOLUTION We see that

∆x =
3− (−2)

10
=

1
2

and xi = (−2) +
1
2
i =

i
2
− 2.

As we are using the Midpoint Rule, we will also need xi−1 and
xi−1 + xi

2
. Since

xi = i
2 −

5
2 , xi−1 =

i−1
2 − 2 = i

2 −
5
2 . This gives

xi−1 + xi
2

=
( i
2 −

5
2 ) + ( i

2 − 2)
2

=
i− 9

2
2

=
i
2
− 9

4
.

We now construct the Riemann sum and compute its value using summation
formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi−1 + xi

2

)
∆x

=

10∑
i=1

f
(

i
2
− 9

4

)
∆x

=

10∑
i=1

(
5
(

i
2
− 9

4

)
+ 2
)(

1
2

)

=

10∑
i=1

(
5i
4
− 37

8

)

=

(
5
4

10∑
i=1

(i)−
10∑
i=1

(
37
8

))

=

(
5
4
· (10)(11)

2
− 10 · 37

8

)
=

45
2

= 22.5

−2 −1 1 2 3

10

17

−8

x

y

Figure 5.3.8: Approximating
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Exam‐
ple 5.3.5.

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summation techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that often each rectangle
includes area that should not be counted, but misses other area that should.
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When∆x is small, these two amounts are about equal and these errors almost
“subtract each other out.” In this example, since our function is a line, these
errors are exactly equal and they do subtract each other out, giving us the exact
answer.

Note too that when the function is negative, the rectangles have a “negative”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negative, the area is counted as negative.

Notice in the previous example that while we used 10 equally spaced inter‐
vals, the number “10” didn’t play a big role in the calculations until the very end.
Mathematicians love to abstract ideas; let’s approximate the area of another re‐
gion using n subintervals, where we do not specify a value of n until the very
end.

Example 5.3.6 Approximating definite integrals with a sum formula

Revisit
∫ 4

0
(4x − x2) dx yet again. Approximate this definite integral using the

Right Hand Rule with n equally spaced subintervals.

SOLUTION We see that∆x =
4− 0
n

=
4
n
. We also find xi = 0+∆xi =

4i
n
.
We construct the Right Hand Rule Riemann sum as follows. Be sure to fol‐

low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
4
n

=

n∑
i=1

(
64
n2

)
i−

n∑
i=1

(
64
n3

)
i2

=

(
64
n2

) n∑
i=1

i−
(
64
n3

) n∑
i=1

i2
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=

(
64
n2

)
· n(n+ 1)

2
−
(
64
n3

)
n(n+ 1)(2n+ 1)

6

=
32(n+ 1)

n
− 32(n+ 1)(2n+ 1)

3n2
(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is now easy to approximate the integral with 1,000,000 subintervals. Hand‐
held calculators may round off the answer a bit prematurely giving an answer of
10 2

3 . (The actual answer for this many subintervals is 10.666666666656.)

We now take an important leap. Up to this point, our mathematics has been
limited to geometry and algebra (finding areas and manipulating expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high‐level mathematics tell us that as n gets large, the
approximation gets better. In fact, if we take the limit as n → ∞, we get the

exact area described by
∫ 4

0
(4x− x2) dx. That is,

∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantastic result. By considering n equally‐spaced subintervals, we ob‐
tained a formula for an approximation of the definite integral that involved our
variable n. As n grows large — without bound — the error shrinks to zero and
we obtain the exact area.
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This section started with a fundamental calculus technique: make an approx‐
imation, refine the approximation to make it better, then use limits in the refin‐
ing process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 5.3.7 Approximating definite integrals with a sum formula

Find a formula that approximates
∫ 5

−1
x3 dx using the Right Hand Rule and n

equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SOLUTION We see that ∆x = 5−(−1)
n = 6

n and xi = (−1) + i∆x =
−1+ 6i

n .
The Riemann sum corresponding to the Right Hand Rule is (followed by sim‐

plifications):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(
−1+ i

6
n

)3 6
n

=

n∑
i=1

1296i3

n4
− 648i2

n3
+

108i
n2

− 6
n

=
1296
n4

n∑
i=1

i3 − 648
n3

n∑
i=1

i2 +
108
n2

n∑
i=1

i−
n∑

i=1

6
n

=
1296
n4

(
n(n+ 1)

2

)2

− 648
n3

n(n+ 1)(2n+ 1)
6

+
108
n2

n(n+ 1)
2

− 6

= 156+
378
n

+
216
n2

(after a sizable amount of algebra)

Once again, we have found a compact formula for approximating the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximation of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approximation of 159.802.

−1 1 2 3 4 5

50

100

x

y

Figure 5.3.9: Approximating
∫ 5

−1
x3 dx

using the Left Hand Rule and 10 evenly
spaced subintervals.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156− 378

n
+

216
n2

)
= 156.
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Limits of Riemann Sums
We have used limits to find the exact value of certain definite integrals. Will this
always work? Wewill show, given not‐very‐restrictive conditions, that yes, it will
always work.

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi)∆x

can be rewritten as an expression explicitly involving n, such as
32
3
(1− 1

n2
).

Viewed in this manner, we can think of the summation as a function of n. An
n value is given (where n is a positive integer), and the sum of areas of n equal‐
ly spaced rectangles is returned, using the Left Hand, Right Hand, or Midpoint
Rules.

Given a definite integral
∫ b

a
f(x) dx, let:

• SL(n) =
n∑

i=1
f(xi−1)∆x, the sumof equally spaced rectangles formedusing

the Left Hand Rule,

• SR(n) =
n∑

i=1
f(xi)∆x, the sum of equally spaced rectangles formed using

the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi−1 + xi

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definition of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find

the exact value of a definite integral
∫ b

a
f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be de‐
termined following a specific rule, but could be f(ci), where ci is any point in
the i th subinterval, as discussed before Riemann Sums where defined in Defini‐
tion 5.3.1.
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The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 5.3.1, let∆xi denote the length of
the i th subinterval in a partition of [a, b]. Now let ∥P∥ represent the length of
the largest subinterval in the partition: that is, ∥P∥ is the largest of all the∆xi’s
(this is sometimes called the size of the partition). If ∥P∥ is small, then [a, b]
must be partitioned into many subintervals, since all subintervals must have
small lengths. “Taking the limit as ∥P∥ goes to zero” implies that the number
n of subintervals in the partition is growing to infinity, as the largest subinterval
length is becoming arbitrarily small. We then interpret the expression

lim
∥P∥→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of rectangles, where the width of each rectangle can be
different but getting small, and the height of each rectangle is not necessarily
determined by a particular rule.” The theorem states that this Riemann Sum
also gives the value of the definite integral of f over [a, b].

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums
Let f be continuous on the closed interval [a, b] and let SL(n), SR(n) and
SM(n) be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx, and

3. lim
∥P∥→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

Now that we havemore tools toworkwith, we can now justify the remaining
properties in Theorem 5.2.1.

Proof

Notes:

254



5.3 Riemann Sums

1. To see why this property holds note that for any Riemann sum we have
∆x = 0, from which we see that:∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆x (by Theorem 5.3.2(2))

= lim
n→∞

0

= 0

2. Applying Theorem 5.3.2(2), we have:∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆x.

When we compute
∫ a

b
f(x) dx, we can use the same partitions and the

same points ci, so the heights f(ci) will remain the same. Since we want
to start at x = b and finish at x = a, we use ∆̃x = a−b

n = −∆x. We now
have:∫ a

b
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆̃x (Theorem 5.3.2(2))

= lim
n→∞

n∑
i=1

f(ci)(−∆x)

= lim
n→∞

−

(
n∑

i=1
f(ci)∆x

)
(using Theorem 5.3.1(3))

= − lim
n→∞

n∑
i=1

f(ci)∆x

= −
∫ b

a
f(x) dx (Theorem 5.3.2(2))

3. This property was justified previously.

4. To see why this property holds, we again use Theorems 5.3.1 and 5.3.2. In
this case we have:∫ b

a
(f(x) + g(x)) dx = lim

n→∞

n∑
i=1

(f(ci) + g(ci))∆x
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= lim
n→∞

n∑
i=1

(f(ci)∆x+ g(ci)∆x)

= lim
n→∞

(
n∑

i=1
f(ci)∆x+

n−1∑
i=0

g(ci)∆x

)

= lim
n→∞

n∑
i=1

f(ci)∆x+ lim
n→∞

n∑
i=1

g(ci)∆x

=

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

5. The justification of this property is left as an exercise. □

Theorem 5.3.3 Further Properties of the Definite Integral
Let f be continuous on the interval [a, b] and let k,m, andM be constants.
The following hold:

1.
∫ b

a
k dx = k(b− a).

2. Ifm ≤ f(x) for all x in [a, b], thenm(b− a) ≤
∫ b

a
f(x) dx.

3. If f(x) ≤ M for all x in [a, b], then
∫ b

a
f(x) dx ≤ M(b− a).

Proof
Before justifying these properties, note that for any subdivision of [a, b]we have:

n∑
i=1

∆x = n
b− a
n

= b− a.
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To see why (a) holds, let k be a constant. We apply Theorem 5.3.2 to see that:∫ b

a
k dx = lim

n→∞

n∑
i=1

k∆x

= lim
n→∞

k

(
n∑

i=1
∆x

)
(using Theorem 5.3.1)

= k

(
lim

n→∞

n∑
i=1

∆x

)
= k

(
lim

n→∞
(b− a)

)
= k(b− a)

We can now use this property to see why (b) holds. Let f andm be as given.
Then we have:

m(b− a) =
∫ b

a
m dx

= lim
n→∞

n∑
i=1

m∆x (Theorem 5.3.2)

≤ lim
n→∞

n∑
i=1

f(ci)∆x

=

∫ b

a
f(x) dx (Theorem 5.3.2)

Justifying property (c) is similar and is left as an exercise. □

We summarize what we have learned over the past few sections here.

• Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b

a
f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangleswhose heights can be determined using: the LeftHand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.
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• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivatives through limits and then learned rules that
made the process simpler. We knowof away to evaluate a definite integral using
limits; in the next sectionwewill see how the Fundamental Theorem of Calculus
makes the process simpler. The key feature of this theorem is its connection
between the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts

1. A fundamental calculus technique is to use to re‐
fine approximations to get an exact answer.

2. What is the upper bound in the summation
14∑
i=7

(48i−201)?

3. This section approximates definite integrals using what
geometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems

In Exercises 5–12, write out each term of the summation and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
10∑
i=1

5

9.
5∑

i=1

1
i

10.
6∑

i=1

(−1)ii

11.
4∑

i=1

(
1
i
− 1

i+ 1

)

12.
5∑

i=0

(−1)i cos(πi)

In Exercises 13–16, write each sum in summation notation.

13. 3+ 6+ 9+ 12+ 15

14. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

15. 1
2
+

2
3
+

3
4
+

4
5

16. 1− e+ e2 − e3 + e4

In Exercises 17–24, evaluate the summation using Theo‐
rem 5.3.1.

17.
10∑
i=1

5

18.
25∑
i=1

i

19.
10∑
i=1

(3i2 − 2i)

20.
15∑
i=1

(2i3 − 10)

21.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

22.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

23. 1+ 2+ 3+ · · ·+ 99+ 100
24. 1+ 4+ 9+ · · ·+ 361+ 400
Theorem 5.3.1 states

n∑
i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, along with other parts of Theorem 5.3.1, to eval‐
uate the summations given in Exercises 25–28.

25.
20∑

i=11

i

26.
25∑

i=16

i3

27.
12∑
i=7

4

28.
10∑
i=5

4i3

In Exercises 29–32, express the limit as a definite integral.

29. lim
n→∞

π

n

n∑
i=1

sin πi
n

1+ πi
n

30. lim
n→∞

n∑
i=1

3
n

(
2+ 3i

n

)√
1+

(
2+ 3i

n

)3

31. lim
n→∞

5
n

n∑
i=1

(
5
(
2+ 5i

n

)3

− 4
(
2+ 5i

n

)
+ 7

)

32. lim
n→∞

2
n

n∑
i=1

1+ 2i
n(

1+ 2i
n

)2

+ 4

In Exercises 33–36, express the definite integral as a limit of a
sum.

33.
∫ 5

2
4− 2x dx

34.
∫ 0

−2
x2 + 3x dx

35.
∫ π/2

−π/2

sin3 x
2+ cos x

dx

36.
∫ 2

0
ex dx
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In Exercises 37–42, a definite integral
∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].

(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

37.
∫ 3

−3
x2 dx, with 6 rectangles using the Left Hand Rule.

38.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

39.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

40.
∫ 3

1

√
10− x2 dx with 4 rectangles using the Right Hand

Rule.

41.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

42.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 43–48, a definite integral
∫ b

a
f(x) dx is given. As

demonstrated in Examples 5.3.6 and 5.3.7, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n subin‐

tervals and the provided rule.

(b) Evaluate the formula using n = 10, 100 and 1, 000.

(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

43.
∫ 1

0
x3 dx, using the Right Hand Rule.

44.
∫ 1

−1
3x2 dx, using the Left Hand Rule.

45.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

46.
∫ 4

1
(2x2 − 3) dx, using the Left Hand Rule.

47.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

48.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

49. Use six rectangles to approximate the area under the given
graph of f from x = 0 to x = 12, using:
(a) The Left Hand Rule,
(b) The Right Hand Rule,
(c) The Midpoint Rule.

2 4 6 8 10 12

2

4

6

8

10

x

y

50. A car accelerates from 0 to 40 mph in 30 seconds. The
speedometer reading at each 5 second interval during this
time is given in the table below. Estimate how far the car
travels during this 30 second period using the velocities at:
(a) The beginning of each time interval.
(b) The end of each time interval.

t (sec) 0 5 10 15 20 25 30
v (mph) 0 6 14 23 30 36 40

51. Use Theorems 5.3.1 and 5.3.2 to justify the remaining prop‐
erty in Theorem 5.2.1:∫ b

a
k · f(x) dx = k

∫ b

a
f(x) dx

52. Use Theorems 5.3.1 and 5.3.2 to justify the remaining prop‐
erty in Theorem 5.3.3: If f(x) ≤ M for all x in [a, b], then∫ b

a
f(x) dx ≤ M(b− a).

Review
In Exercises 53–58, find an antiderivative of the given function.

53. f(x) = 5 sec2 x

54. f(x) = 7
x

55. g(t) = 4t5 − 5t3 + 8
56. g(t) = 5 · et

57. g(t) = cos t+ sin t

58. f(x) = 1√
x
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5.4 The Fundamental Theorem of Calculus

5.4 The Fundamental Theorem of Calculus

In this sectionwewill find connections between differential calculus (derivatives
and antiderivatives) and integral calculus (definite integrals). These connections
between the major ideas of calculus are important enough to be called the Fun‐
damental Theorem of Calculus. These connections will also explain why we use
the term indefinite integral for the set of all antiderivatives, and why we use
such similar notations for antiderivatives and definite integrals.

Let f(t) be a continuous function defined on [a, b]. The definite integral∫ b
a f(x) dx is the “area under f ” on [a, b]. We can turn this concept into a function
by letting the upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.1. We can study this function using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

a x b
t

y

Figure 5.4.1: The area of the shaded
region is F(x) =

∫ x
a f(t) dt.

The first part of the Fundamental Theorem of Calculus tells us how to find
derivatives of these kinds of functions.

Theorem 5.4.1 The Fundamental Theorem of Calculus, Part 1
Let f be continuous on [a, b] and let F(x) =

∫ x
a f(t) dt. Then F is a contin‐

uous function on [a, b], differentiable on (a, b), and

F ′(x) = f(x).

Proof
In order to seewhy this is true, wemust compute lim

h→0

F(x+ h)− F(x)
h

. Suppose
x and x+ h are in [a, b]. Theorem 5.2.1 implies that∫ x+h

a
f(t) dt =

∫ x

a
f(t) dt+

∫ x+h

x
f(t) dt,

which we can rewrite as∫ x+h

x
f(t) dt =

∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt.
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Chapter 5 Integration

This allows us to simplify the numerator of the difference quotient in our limit
as follows:

F(x+ h)− F(x) =
∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt (by the definition of F)

=

∫ x+h

x
f(t) dt,

so we see that

lim
h→0

F(x+ h)− F(x)
h

= lim
h→0

1
h

∫ x+h

x
f(t) dt.

Assume for the moment that h > 0. Since x and x + h are both in [a, b]
and f is continuous on [a, b], f is also continuous on [x, x + h]. Applying the
Extreme Value Theorem (Theorem 3.1.1), we know that fmust have an absolute
minimum value f(u) = m and an absolute maximum value f(v) = M on this
interval. In other words, m ≤ f(t) ≤ M whenever x ≤ t ≤ x + h. Using
Theorem 5.3.3, we can now say that∫ x+h

x
m dt ≤

∫ x+h

x
f(t) dt ≤

∫ x+h

x
M dt.

Computing the outer integrals, this becomes

m(x+ h− x) ≤
∫ x+h

x
f(t) dt ≤ M(x+ h− x), or

mh ≤
∫ x+h

x
f(t) dt ≤ Mh.

Since h > 0, we may divide by h to obtain

f(u) = m ≤ 1
h

∫ x+h

x
f(t) dt ≤ M = f(v).

Now suppose that h < 0. Preceding as before, we know that f has an ab‐
solute minimum value f(u) = m and an absolute maximum value f(v) = M on
the interval [x+ h, x]. We know thatm ≤ f(t) ≤ M whenever x+ h ≤ t ≤ x, so
we have ∫ x

x+h
m dt ≤

∫ x

x+h
f(t) dt ≤

∫ x

x+h
M dt.

Once again we compute to obtain

−mh ≤
∫ x

x+h
f(t) dt ≤ −Mh.

Notes:

262



5.4 The Fundamental Theorem of Calculus

Since−h > 0, we can divide by−h to obtain:

m ≤ −1
h

∫ x

x+h
f(t) dt ≤ M

f(u) = m ≤ 1
h

∫ x+h

x
f(t) dt ≤ M = f(v) (using Theorem 5.2.1(2))

We are now ready to compute the desired limit,

lim
h→0

F(x+ h)− F(x)
h

= lim
h→0

1
h

∫ x+h

x
f(t) dt.

Whether h > 0 or h < 0, we know that

f(u) ≤ 1
h

∫ x+h

x
f(t) dt ≤ f(v),

where u and v are both between x and x+ h. Note that

lim
h→0

(x+ h) = x and lim
h→0

x = x,

so the Squeeze Theorem (Theorem 1.3.5) says that

lim
h→0

u = x and lim
h→0

v = x.

Since f is continuous at x, we know that

lim
h→0

f(u) = f(x) and lim
h→0

f(v) = f(x).

Finally, we know that

f(u) ≤ 1
h

∫ x+h

x
f(t) dt ≤ f(v),

so applying the Squeeze Theorem again tells us that

lim
h→0

1
h

∫ x+h

x
f(t) dt = f(x).

Therefore F ′(x) = f(x) as desired. Because the limit exists, Exercise 35 in
Section 2.1 implies that F is continuous on (a, b) as well. All that remains is to
show that F is continuous at a and b. But repeating the preceding argument
shows that |F(a+ δ)− F(a)| ≤ (|M|+ |m|)δ, and similarly for F near b. □
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Watch the video:
Fundamental Theorem of Calculus Part 1 at
https://youtu.be/PGmVvIglZx8

Initially this seems simple, as demonstrated in the following example.

Example 5.4.1 Using the Fundamental Theorem of Calculus, Part 1
Let F(x) =

∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

SOLUTION Using the Fundamental Theorem of Calculus, we have
F ′(x) = x2 + sin x.

This simple example reveals something incredible: F(x) is an antiderivative
of x2 + sin x. Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)
We have done more than found a complicated way of computing an antider‐

ivative. Consider a function f defined on an open interval containing a, b and c.
Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using the

properties of the definite integral found in Theorem 5.2.1, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using antiderivatives. Furthermore, Theorem 5.1.1
told us that any other antiderivative G differs from F by a constant: G(x) =
F(x)+C. This means that G(b)−G(a) = (F(b)+C)− (F(a)+C) = F(b)− F(a),
and the formula we’ve just found holds for any antiderivative. Consequently, it
does not matter what value of C we use, and we might as well let C = 0. This
proves the second part of the Fundamental Theorem of Calculus.
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5.4 The Fundamental Theorem of Calculus

Theorem 5.4.2 The Fundamental Theorem of Calculus, Part 2
Let f be continuous on [a, b] and let F be any antiderivative of f. Then∫ b

a
f(x) dx = F(b)− F(a).

Watch the video:
The Fundamental Theorem of Calculus. Part 2 at
https://youtu.be/nHnZVFeQvNQ

Example 5.4.2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of time in the previous section studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SOLUTION We need an antiderivative of f(x) = 4x − x2. All antideriva‐
tives of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous section, just
with much less work.

Notation: A special notation is often used in the process of evaluating definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ‐
ing F(b)− F(a), the notation F(x)

∣∣∣b
a
is used. Thus the solution to Example 5.4.2

would be written as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.
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Example 5.4.3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

SOLUTION

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesting; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesting; the integrand is a constant function, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
Notice how the evaluation of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a).

The Fundamental Theorem of Calculus and the Chain Rule
Part 1 of the Fundamental Theorem of Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F ′(x) = f(x). Using other notation,

d
dx
(
F(x)

)
= f(x). While we have

just practiced evaluating definite integrals, sometimes finding antiderivatives is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. Functions written as F(x) =

∫ x
a f(t) dt are useful in such

situations.
It may be of further use to compose such a function with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.
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5.4 The Fundamental Theorem of Calculus

What is the derivative of such a function? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F ′

(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example 5.4.4 The FTC, Part 1, and the Chain Rule

Find the derivative of F(x) =
∫ x2

2
ln t dt.

SOLUTION We can view F(x) as being the function G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x))g ′(x)
= ln(g(x))g ′(x)
= ln(x2)2x
= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped.

Practice this once more.

Example 5.4.5 The FTC, Part 1, and the Chain Rule

Find the derivative of F(x) =
∫ 5

cos x
t3 dt.

SOLUTION Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriv‐

ative of F is straightforward:

F ′(x) = sin x cos3 x.

Understanding Motion with the Fundamental Theorem of Calcu‐
lus
We established, starting with Key Idea 2.2.1, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac‐
celeration function. Now consider definite integrals of velocity and acceleration

functions. Specifically, if v(t) is a velocity function, what does
∫ b

a
v(t) dtmean?
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The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any antiderivative of v(t). Since v(t) is a velocity function, V(t)
must be a position function, and V(b)− V(a)measures a change in position, or
displacement.

How would we measure total distance traveled? We have to consider the
intervals when v(t) ≥ 0 and when v(t) ≤ 0. Therefore,

total distance traveled =

∫ b

a
|v(t)| dt.

Example 5.4.6 Finding displacement and total distance traveled
A ball is thrown straight up with velocity given by v(t) = −32t + 20ft/s, where
t is measured in seconds. Find, and interpret,

1.
∫ 1

0
v(t) dt and 2.

∫ 1

0
|v(t)| dt.

SOLUTION

1. Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4 ft.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t+
20, the height of the ball, 1 second later, will be 4 feet above the initial
height. We will see in part 2. that the distance traveled is much farther. It
has gone up to its peak and is falling down, but the difference between its
height at t = 0 and t = 1 is 4 ft.

2. Here we are trying to find the total distance traveled by the ball. Wemust
first consider where v(t) > 0 and v(t) < 0.

v(t) = −32t+ 20 = 0
−32t = −20

t =
5
8
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5.4 The Fundamental Theorem of Calculus

This means v(t) > 0 for t < 5
8 and v(t) < 0 for t > 5

8 so we have∫ 1

0
|v(t)| dt =

∫ 5/8

0
v(t) dt+

∫ 1

5/8
−v(t) dt

=

∫ 5/8

0
−32t+ 20 dt+

∫ 1

5/8
32t− 20 dt

=
34
4

= 8.5 ft.

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. So inte‐
grating a speed function gives total change of position, without the possibility of
“negative position change.” Hence the integral of a speed function gives distance
traveled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
then ∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

1 2 3 4
x

y

(a)

1 2 3 4
x

y

(b)

1 2 3 4
x

y

(c)

1 2 3 4
x

y

(d)

Figure 5.4.2: A graph of a function f to
introduce the Mean Value Theorem and
differently sized rectangles giving upper
and lower bounds on

∫ 4
1 f(x) dx; the last

rectangle matches the area exactly.

The Mean Value Theorem and Average Value
Consider the graph of a function f in Figure 5.4.2(a) and the area defined by∫ 4
1 f(x) dx. Three rectangles are then drawn; in (b), the height of the rectan‐
gle is greater than f on [1, 4], hence the area of this rectangle is is greater than∫ 4
1 f(x) dx.

In (c), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (d) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
1 f(x) dx. Since rectangles that are “too big”, as in (b), and

rectangles that are “too little,” as in (c), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.
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Theorem 5.4.3 The Mean Value Theorem of Integration
Let f be continuous on [a, b]. There exists a value c in (a, b) such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existential statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.3 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 3.2.1.

Proof
If a = b, then

∫ a
a f(x) dx = 0 = f(a)(a− a). Otherwise, we define the following

for x in [a, b]:

F(x) =
∫ x

a
f(t) dt.

Applying Theorem 5.4.1, we know F is differentiable on (a, b) and that F ′(x) =
f(x) for any x in (a, b). We may now apply the Mean Value Theorem for Differ‐
entiation (Theorem 3.2.1) to see that there is a value c in (a, b) such that

F′(c) =
F(b)− F(a)

b− a
.

Note that F′(c) = f(c) and that F(b) − F(a) =
∫ b
a f(x) dx by Theorem 5.4.2.

Therefore we can rewrite our equation as:

f(c) =
∫ b
a f(x) dx
b− a

, or

f(c)(b− a) =
∫ b

a
f(x) dx. □

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

1 2

1

c π

sin 0.69

x

y

Figure 5.4.3: A graph of y = sin x on
[0, π] and the rectangle guaranteed by
the Mean Value Theorem.

Example 5.4.7 Using the Mean Value Theorem
Consider

∫ π

0
sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SOLUTION We first need to evaluate
∫ π

0
sin x dx. (This was previously
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5.4 The Fundamental Theorem of Calculus

done in Example 5.4.3.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c =
2
π

⇒ c = sin−1
(
2
π

)
≈ 0.69.

In Figure 5.4.3 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π].

Let f be a function on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:

∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

y = f(x)

a bc

f(c)

x

y

y = f(x) − f(c)

a bc

f(c)

x

y

Figure 5.4.4: On top, a graph of y = f(x)
and the rectangle guaranteed by the
Mean Value Theorem. Below, y = f(x) is
shifted down by f(c); the resulting “area
under the curve” is 0.

When f(x) is shifted by −f(c), the amount of area under f above the x‐axis on
[a, b] is the same as the amount of area below the x‐axis above f; see Figure 5.4.4
for an illustration of this. In this sense, we can say that f(c) is the average value
of f on [a, b].

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewritten as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, partition the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < · · · < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + · · ·+ f(cn)

)
=

1
n

n∑
i=1

f(ci).
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Multiply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1
f(ci)

1
n

=

n∑
i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definition.

Definition 5.4.1 The Average Value of f on [a, b]
Let f be continuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.

An application of this definition is given in the following example.

Example 5.4.8 Finding the average value of a function
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in ft/s.

What is the average velocity of the object?

SOLUTION By our definition, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 ft/s.

Notes:

272



5.4 The Fundamental Theorem of Calculus

We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.8? We calculate
this by integrating its velocity function:

∫ 3
0 (t − 1)2 dt = 3 ft. Its final position

was 3 feet from its initial position after 3 seconds: its average velocity was 1 ft/s.

This section has laid the groundwork for a lot of great mathematics to follow.
The most important lesson is this: definite integrals can be evaluated using an‐
tiderivatives. Since the previous section established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. Much of our time in Chapter 8 will be
devoted to techniques of finding antiderivatives so that awide variety of definite
integrals can be evaluated.

Notes:
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Exercises 5.4
Terms and Concepts

1. How are definite and indefinite integrals related?

2. What constant of integration is most commonly usedwhen
evaluating definite integrals?

3. T/F: If f is a continuous function, then F(x) =
∫ x

a
f(t) dt is

also a continuous function.
4. The definite integral can be used to find “the area under a

curve.” Give two other uses for definite integrals.

Problems

In Exercises 5–34, use the Fundamental Theorem of Calculus
Part 2 to evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ −1

−2
(4− 2x3) dx

12.
∫ π

0
(2 cos x− 2 sin x) dx

13.
∫ 3

1
ex dx

14.
∫ 4

0

√
t dt

15.
∫ 25

9

1√
t
dt

16.
∫ 8

1

3√x dx

17.
∫ 2

1

1
x
dx

18.
∫ 2

1

1
x2

dx

19.
∫ 1

0
x3 dx

20.
∫ 1

0
x100 dx

21.
∫ −5

−10
3 dx

22.
∫ π/3

π/6
csc x cot x dx

23.
∫ 2

0

∣∣x2 − 1
∣∣ dx

24.
∫ 3

0
|1− 2x| dx

25.
∫ 2

−1
(u+ 4)(2u+ 1) du

26.
∫ 9

1

1+
√
x+ x√
x

dx

27.
∫ π

π/7
sin2 x+ cos2 x dx

28.
∫ π/4

−π/4
2+ tan2 θ dθ

29.
∫ π/4

0
sec t(sec t+ tan t) dt

30.
∫ π/2

π/6

sin 2x
sin x

dx

31.
∫ 4

1

4+ 6u√
u

du

32.
∫ π/3

0

sin θ + sin θ tan2 θ
sec2

dθ

33.
∫ 8

1

2+ t
3√t2

dt

34.
∫ 1

0

4√x5 + 5√x4 dx

35. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a positive, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a positive, even

integer.

36. Explain why
∫ a+2π

a
sin t dt = 0 for all values of a.

In Exercises 37–40, find a value c guaranteed by the Mean Val‐
ue Theorem.

37.
∫ 2

0
x2 dx

38.
∫ 2

−2
x2 dx

39.
∫ 1

0
ex dx

40.
∫ 16

0

√
x dx

In Exercises 41–46, find the average value of the function on
the given interval.
41. f(x) = sin x on [0, π/2]
42. y = sin x on [0, π]
43. y = x on [0, 4]
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44. y = x2 on [0, 4]

45. y = x3 on [0, 4]

46. g(t) = 1/t on [1, e]

In Exercises 47–50, a velocity function of an object moving
along a straight line is given. Find (a) the displacement of the
object over the given time interval and (b) the total distance
traveled by the object over the given time interval.

47. v(t) = −32t+ 20ft/s on [0, 5]

48. v(t) = −32t+ 200ft/s on [0, 10]

49. v(t) = cos t ft/s on [0, 3π/2]

50. v(t) = 4√t ft/s on [0, 16]

In Exercises 51–54, an acceleration function of an object mov‐
ing along a straight line is given. Find the change of the object’s
velocity over the given time interval.

51. a(t) = −32ft/s2 on [0, 2]

52. a(t) = 10ft/s2 on [0, 5]

53. a(t) = t ft/s2 on [0, 2]

54. a(t) = cos t ft/s2 on [0, π]

In Exercises 55–62, use the Fundamental Theorem of Calculus
Part 1 to find F′(x).

55. F(x) =
∫ x3+x

2

1
t
dt

56. F(x) =
∫ 0

x3
t3 dt

57. F(x) =
∫ x2

x
(t+ 2) dt

58. F(x) =
∫ ex

ln x
sin t dt

59. F(x) =
∫ x

1

ln t+ 4
t2 + 7

dt

60. F(x) =
∫ sin x

2
cos3 t+ 3 tan3 t dt

61. F(x) =
∫ 4

5x3

√
cos t+ 5
t2 + et

dt

62. F(x) =
∫ 10

tan2 x
ln t+ et

2−7 dt

63. Let g(x) =
∫ x

0
f(t) dt where f is the function whose graph

is shown below.
(a) Evaluate g(x) for x = 0, 1, 2, 3, 4, 5, 6.
(b) Estimate g(7).
(c) Where does g have a minimum value? a maximum

value?
(d) Sketch the graph of g.

2 4 6

−2

2

4

x

y

64. For any x > 0, define g(x) =
∫ x

1

1
t
dt.

(a) Show that g(x) is continuous and differentiable on
(0,∞) with g′(x) = 1

x .
(b) Show that for any positive x and y we have g(xy) =

g(x) + g(y).
[Hint: Treat y as a constant, consider the derivative
with respect to x of each side of the proposed equa‐
tion, and apply Theorem 5.1.1.]

(c) Show that for any positive x and any r we have
g(xr) = rg(x).
[Hint: Consider the derivative with respect to x of
each side of the proposed equation and apply The‐
orem 5.1.1.]

65. Let f(x) =

{
−1 −π ≤ x < 0
1 0 ≤ x < π

and extend this function

so that it is periodic with period 2π. This function is known
as a square wave and looks like

−5 5

−2

2

x

y

For a positive integer n, define bn =
1
π

∫ π

−π

f(x) sin(nx) dx.

(a) Find bn.

(b) Graph
N∑

n=1

bn sin(nx) for various values of N. What

do you observe?
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5.5 Substitution
We motivate this section with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starting with f(x)
as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know‐
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not‐so‐complicated integral

∫
h(u) du. We’ll formally establish lat‐

er how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
substitution. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

We have established u as a function of x, so now consider the differential of u:

du = (2x+ 3) dx.

Keep inmind that (2x+3) and dx aremultiplied; the dx is not “just sitting there.”
Note: Recall from Section 4.3 that
the differential of x, denoted dx, is
any nonzero real number. If u is a
function of x, then the differential of
u, denoted du, is defined by du =
u′(x) dx.

Return to the original integral and do some substitutions through algebra:∫
(20x+ 30)(x2 + 3x− 5)9 dx =

∫
10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

Notes:
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5.5 Substitution

One might well look at this and think “I (sort of) followed how that worked, but
I could never come up with that on my own,” but the process is learnable. This
section contains numerous examples through which the reader will gain under‐
standing and mathematical maturity enabling them to regard substitution as a
natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differentiable functions and consider the deriv‐
ative of their composition:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x) and
replacing it with a variable. By setting u = g(x), we can rewrite the derivative
as d

dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x) dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 5.5.1 Integration by Substitution
Let F and g be differentiable functions, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x) dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the antiderivative of the derivative of F

is just F, plus a constant. The “work” involved is making the proper substitution.

Notes:
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Chapter 5 Integration

There is not a step‐by‐step process to memorize; rather, experience will be your
guide. To gain experience, we now embark on many examples.

Watch the video:
Integration by U‐Substitution (Indefinite Integral)
at
https://youtu.be/li1SMPsqNuw

Example 5.5.1 Integrating by substitution
Evaluate

∫
x sin(x2 + 5) dx.

SOLUTION Knowing that substitution is related to the Chain Rule, we
choose to let u be the “inside” function of sin(x2+5). (This is not always a good
choice, but it is often the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now substitute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by evalu‐

ating the derivative of the right hand side.

Notes:
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5.5 Substitution

Example 5.5.2 Integrating by substitution
Evaluate

∫
cos(5x) dx.

SOLUTION Again let u replace the “inside” function. Letting u = 5x, we
have du = 5 dx. Since our integrand does not have a 5 dx term, we can divide
the previous equation by 5 to obtain 1

5 du = dx. We can now substitute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, so that we
can say ∫

F ′(ax+ b) dx =
1
a
F(ax+ b) + C.

For example,
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can
use this idea, but we will only employ it after going through all of the steps.

Example 5.5.3 Integrating by substituting a linear function
Evaluate

∫
7

−3x+ 1
dx.

SOLUTION We can view this as a composition of the functions f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of substi‐
tution, we let u = −3x+1, the inside function. Thus du = −3 dx. The integrand
lacks a −3; hence divide the previous equation by −3 to obtain − du/3 = dx.

Notes:
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We can now evaluate the integral through substitution.∫
7

−3x+ 1
dx =

∫ (
7
u

)(
du
−3

)
=

−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln |−3x+ 1|+ C.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 5.5.4 Integrating by substitution
Evaluate

∫
sin x cos x dx.

SOLUTION There is not a composition of function here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given an inte‐
gral to evaluate, it is often beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand. The substitution becomes very straightforward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral letting u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Notes:
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Example 5.5.5 Integrating by substitution
Evaluate

∫
x
√
x+ 3 dx.

SOLUTION Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitution. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this particular case, some algebra
will be needed to make one’s answer match the integrand in the original prob‐
lem.

Example 5.5.6 Integrating by substitution
Evaluate

∫
1

x ln x
dx.

SOLUTION This is another example where there does not seem to be
an obvious composition of functions. The line of thinking used in Example 5.5.5
is useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How‐

Notes:
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ever, setting u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
1/u

1
x
dx︸︷︷︸
du

=

∫
1
u
du

= ln |u|+ C
= ln |ln x|+ C.

The final answer is interesting; the natural log of the natural log. Take the deriv‐
ative to confirm this answer is indeed correct.

Integrals Involving Trigonometric Functions

Section 8.2 delves deeper into integrals of a variety of trigonometric functions;
here we use substitution to establish a foundation that we will build upon.

The next three examples will help fill in somemissing pieces of our antideriv‐
ative knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose‐
cant? We discover these next.

Example 5.5.7 Integration by substitution: antiderivatives of tan x
Evaluate

∫
tan x dx.

SOLUTION The previous paragraph established that we did not know
the antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composition of func‐
tions may not be immediately obvious, recognize that cos x is “inside” the 1/x
function. Therefore, we see if setting u = cos x returns usable results. We have

Notes:
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that du = − sin x dx, hence− du = sin x dx. We can integrate:∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
− du

=

∫
−1
u

du

= − ln |u|+ C
= − ln |cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln |cos x|+ C = ln
∣∣(cos x)−1∣∣+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln |sec x|+ C.

Thus the result they give is
∫
tan x dx = ln |sec x| + C. These two answers are

equivalent.

Example 5.5.8 Integrating by substitution: antiderivatives of sec x
Evaluate

∫
sec x dx.

SOLUTION This example employs a wonderful trick: multiply the inte‐
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of left field, but it works beautifully. Consider:∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.

Notes:
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Now let u = sec x+ tan x; this means du = (sec x tan x+ sec2 x) dx, which is our
numerator. Thus: ∫

sec x dx =
∫

du
u

= ln |u|+ C
= ln |sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 5.5.7 and 5.5.8
to find antiderivatives of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 5.5.2 Antiderivatives of Trigonometric Functions

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = ln |sec x|+ C

4.
∫

csc x dx = − ln |csc x+ cot x|+ C

5.
∫

sec x dx = ln |sec x+ tan x|+C

6.
∫

cot x dx = ln |sin x|+ C

Simplifying the Integrand
It is common to be reluctant to manipulate the integrand of an integral; at first,
our grasp of integration is tenuous and one may think that working with the in‐
tegrand will improperly change the results. Integration by substitution works
using a different logic: as long as equality is maintained, the integrand can be
manipulated so that its form is easier to deal with. The next example demon‐
strates a common way in which using algebra first makes the integration easier
to perform.

Example 5.5.9 Integration by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, substitution.

SOLUTION We already know how to integrate this particular example.
Rewrite

√
x as x 1

2 and simplify the fraction:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

Notes:
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We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using substitution as its implementation is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2 du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =

∫
(x2 + 2x + 3) · 2 du. What are we to

do with the other x terms? Since u = x 1
2 , we have u2 = x and u4 = x2. We can

then replace x2 and x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situation, sub‐
stitution is arguably more work than our other method. The fantastic thing is
that it works. It demonstrates how flexible integration is.

Substitution and Definite Integration
So far this section has focused on learning a new technique for finding antideriv‐
atives. In practice, we will frequently be interested in finding definite integrals.
We can use this antiderivative to evaluate the definite integral, but there is a
more efficient method.

At its heart, (using the notation of Theorem 5.5.1) substitution converts inte‐
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the substitution of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the substitution is performed.
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Chapter 5 Integration

Theorem 5.5.3 Substitution with Definite Integrals
Let F and g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 5.5.3 states that once you convert to integrating with re‐
spect to u, you do not need to switch back to evaluating with respect to x. A few
examples will help one understand.

Example 5.5.10 Definite integrals and substitution: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 5.5.3.

SOLUTION Observing the composition of functions, let u = 3x − 1,
hence du = 3 dx. As 3 dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x − 1, we are implicitly stating that g(x) = 3x − 1. Theo‐
rem 5.5.3 states that the new lower bound is g(0) = −1; the new upper bound
is g(2) = 5. We now evaluate the definite integral:

y = cos(3x − 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

y = 1
3 cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

(b)

Figure 5.5.1: Graphing the areas de‐
fined by the definite integrals of Exam‐
ple 5.5.10.

∫ 2

1
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
.

Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 5.5.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new
integrand is shaded. In this particular situation, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Notes:
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5.5 Substitution

Example 5.5.11 Definite integrals and substitution: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 5.5.3.

SOLUTION We saw the corresponding indefinite integral back in Exam‐
ple 5.5.4. In that example we set u = sin x but stated that we could have let
u = cos x. For variety, we do the latter here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = − du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

y = sin x cos x

1

−0.5

0.5

1

π
2

x

y

(a)

y = u

1

−0.5

0.5

1

π
2

u

y

(b)

Figure 5.5.2: Graphing the areas de‐
fined by the definite integrals of Exam‐
ple 5.5.11.

∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣∣1
0
=

1
2
.

In Figure 5.5.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 5.5.3 guarantees that they have the same area.

Example 5.5.12 Definite integrals and substitution: changing the bounds

Evaluate
∫ 2

0
xex

2+1 dx using Theorem 5.5.3.

SOLUTION We note the composition of functions and let u = x2 + 1,
hence du = 2x dx. We divide the differential by 2 to get du

2 = x dx.
Setting g(x) = u = x2 + 1, we find that the new lower bound is g(0) = 1;

the new upper bound is g(2) = 5. We now evaluate:∫ 2

0
xex

2+1 dx =
∫ 5

1
eu

du
2

=
1
2
eu
∣∣∣∣5
1

=
1
2
(e5 − e1)

=
e
2
(e4 − 1).
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Exercises 5.5
Terms and Concepts

1. Substitution “undoes” what derivative rule?

2. T/F: One can sometimes use algebra to rewrite the inte‐
grand of an integral to make it easier to evaluate.

Problems

In Exercises 3–56, evaluate the indefinite integral.

3.
∫

3x2
(
x3 − 5

)7 dx
4.

∫
(2x− 5)

(
x2 − 5x+ 7

)3 dx
5.

∫
x
(
x2 + 1

)8 dx
6.

∫
(12x+ 14)

(
3x2 + 7x− 1

)5 dx
7.

∫
1

2x+ 7
dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

15.
∫

sin2(x) cos(x) dx

16.
∫

cos3(x) sin(x) dx

17.
∫

cos(3− 6x) dx

18.
∫

sec2(4− x) dx

19.
∫

sec(2x) dx

20.
∫

x cos
(
x2
)
dx

21.
∫

tan2(x) dx

22.
∫

cot x dx. Do not just refer to Theorem 5.5.2 for the an‐
swer; justify it through Substitution.

23.
∫

csc x dx. Do not just refer to Theorem 5.5.2 for the an‐
swer; justify it through Substitution.

24.
∫

e3x−1 dx

25.
∫

ex
3
x2 dx

26.
∫

ex
2−2x+1(x− 1) dx

27.
∫

ex + 1
ex

dx

28.
∫

ex

ex + 1
dx

29.
∫

ex − e−x

e2x
dx

30.
∫

ln x
x

dx

31.
∫ (

ln x
)2

x
dx

32.
∫ ln

(
x3
)

x
dx

33.
∫

1
x ln (x2)

dx

34.
∫

x2 + 3x+ 1
x

dx

35.
∫

x3 + x2 + x+ 1
x

dx

36.
∫

x2

(x3 + 3)2
dx

37.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

38.
∫

x√
1− x2

dx

39.
∫

x2 csc2
(
x3 + 1

)
dx

40.
∫

sin(x)
√

cos(x) dx

41.
∫

sin(5x+ 1) dx

42.
∫

1
x− 5

dx

43.
∫

7
3x+ 2

dx

44.
∫

2x+ 7
x2 + 7x+ 3

dx

45.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

46.
∫

3x− 3√
x2 − 2x− 6

dx

47.
∫

x− 3√
x2 − 6x+ 8

dx

48.
∫

cos
√
x√

x
dx
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49.
∫

sec2 θ tan θ dθ

50.
∫

x
√
2x+ 3 dx

51.
∫

x3

(x2 + 1)3
dx

52.
∫

2x5

x2 + 1
dx

53.
∫

3x8(x3 + 2)8 dx

54.
∫

sin
( x
3
)
dx

55.
∫

sin5
( x
4
)
cos

( x
4
)
dx

56.
∫

x1/2 cos(x3/2 + 1) dx

In Exercises 57–66, evaluate the definite integral.

57.
∫ 3

1

1
x− 5

dx

58.
∫ 6

2
x
√
x− 2 dx

59.
∫ π/2

−π/2
sin2 x cos x dx

60.
∫ 1

0
2x(1− x2)4 dx

61.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

62.
∫ π/4

0
etan x sec2 x dx

63.
∫ 1

−1

x
1+ x2

dx

64.
∫ ln 3

1

ex

1+ ex
dx

65.
∫ 2

−1

x√
x+ 2

dx

66.
∫ π

4

0
cos5(2x) sin(2x) dx
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6: APPLICATIONS OF
INTEGRATION

Webegin this chapter with a reminder of a few key concepts from Chapter 5. Let
f be a continuous function on [a, b] which is partitioned into n equally spaced
subintervals as

a = x0 < x1 < · · · < xn−1 < xn = b.

Let ∆x = (b − a)/n denote the length of the subintervals, and let ci be any
x‐value in the i th subinterval. Definition 5.3.1 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are often used to approximate some quan‐
tity (area, volume, work, pressure, etc.). The approximation becomes exact by
taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 5.3.2 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications.
Suppose the value Q of a quantity is to be calculated. We first approximate the
value of Q using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Notes:

291



Chapter 6 Applications of Integration

Key Idea 6.0.1 Application of Definite Integrals Strategy
Let a quantity be given whose value Q is to be computed.

1. Divide the quantity into n smaller “subquantities” of value Qi.

2. Identify a variable x and function f(x) such that each subquantity
can be approximated with the product f(ci)∆x, where ∆x repre‐
sents a small change in x. Thus Qi ≈ f(ci)∆x.

3. Recognize that Q ≈
n∑

i=1
Qi =

n∑
i=1

f(ci)∆x, which is a Riemann

Sum.

4. Taking the appropriate limit gives Q =

∫ b

a
f(x) dx

This Key Idea will make more sense after we have had a chance to use it
several times. We begin with Area Between Curves.

6.1 Area Between Curves
We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.4 and approach it instead using the
technique described in Key Idea 6.0.1.

f(x)

g(x)

a b
x

y

(a)

f(x)

g(x)

a b
x

y

(b)

f(x)

g(x)

a b
x

y

(c)

Figure 6.1.1: Subdividing a region into
vertical slices and approximating the
areas with rectangles.

LetQ be the area of a region bounded by continuous functions f and g. If we
break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.

The issue to address next is how to systematically break a region into subregions.
A graph will help. Consider Figure 6.1.1 (a) where a region between two curves
is shaded. While there are many ways to break this into subregions, one partic‐
ularly efficient way is to “slice” it vertically, as shown in Figure 6.1.1 (b), into n
equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x‐value ci in the i th slice, we set the
height of the rectangle to be f(ci) − g(ci), the difference of the corresponding
y‐values. The width of the rectangle is a small difference in x‐values, which we
represent with∆x. Figure 6.1.1 (c) shows sample points ci chosen in each subin‐
terval and appropriate rectangles drawn. Each slice has an area approximately
equal to

(
f(ci) − g(ci)

)
∆x; hence, the total area is approximately the Riemann

Sum

Notes:
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6.1 Area Between Curves

Q ≈
n∑

i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

Theorem 6.1.1 Area Between Curves
Let f(x) and g(x) be continuous functions defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Often, we do not know which function is greater (or they switch within the
domain of integration). If so, we can say that the area is

∫ b
a |f(x)− g(x)| dx,

which may involve dividing the domain of integration into pieces.

Watch the video:
Finding Areas Between Curves at
https://youtu.be/DRFyNHdVgUA

Example 6.1.1 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x + 2, g(x) = 1

2 cos(2x) − 1,
x = 0 and x = 4π, as shown in Figure 6.1.2.

SOLUTION

f(x)

g(x)

5 10

−2

2

4π
x

y

Figure 6.1.2: Graphing an enclosed re‐
gion in Example 6.1.1.

The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π units2.

Notes:
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Chapter 6 Applications of Integration

Example 6.1.2 Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SOLUTION It will help to sketch these two functions, as done in Fig‐
ure 6.1.3.

y = x2 + x − 5

y = 3x − 2

−2 −1 1 2 3 4

5

10

15

x

y

Figure 6.1.3: Sketching the region en‐
closed by y = x2 + x− 5 and y = 3x− 2
in Example 6.1.2.

The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 6.1.1, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

1 2 3 4

−4

−2

2

x

y

Figure 6.1.4: Graphing a region enclosed
by two functions in Example 6.1.3.

Example 6.1.3 Finding total area enclosed by curves
Find the total area of the region enclosed by the functions f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 6.1.4.

SOLUTION A quick calculation shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by computing
∫ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integration returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
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6.1 Area Between Curves

proper integrand in each.

Total Area =

∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
−x3 + 7x2 − 14x+ 8

)
dx

=
5
12

+
8
3
=

37
12

units2.

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 6.1.1. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

y =
√
x + 2 y = −(x − 1)2 + 3

1 2

1

2

3

x

y

Figure 6.1.5: Graphing a region for Exam‐
ple 6.1.4.

Example 6.1.4 Finding area: integrating with respect to y
Find the area of the region enclosed by the functions y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 6.1.5.

SOLUTION We give two approaches to this problem. In the first ap‐
proach, we notice that the region’s “top” is defined by two different curves.
On [0, 1], the top function is y =

√
x + 2; on [1, 2], the top function is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

Total Area =

∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
−(x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3 = 4/3.

The second approach is clever and very useful in certain situations. We are
used to viewing curves as functions of x; we input an x‐value and a y‐value is re‐
turned. Some curves can also be described as functions of y: input a y‐value and
an x‐value is returned. We can rewrite the equations describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√
3− y+ 1.

x = (y − 2)2 x =
√
3 − y + 1

1 2

1

2

3

x

y

Figure 6.1.6: The region used in Exam‐
ple 6.1.4 with boundaries relabeled as
functions of y.
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Chapter 6 Applications of Integration

Figure 6.1.6 shows the region with the boundaries relabeled. A horizontal
rectangle is also pictured. The width of the rectangle is a small change in y: ∆y.
The height of the rectangle is a difference in x‐values. The “top” x‐value is the
largest value, i.e., the rightmost. The “bottom” x‐value is the smaller, i.e., the
leftmost. Therefore the height of the rectangle is(√

3− y+ 1
)
− (y− 2)2.

The area is found by integrating the above function with respect to y with
the appropriate bounds. We determine these by considering the y‐values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “bottom” functions exist on the y interval [2, 3]. Thus

Total Area =

∫ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
−2
3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.

The important thing to notice is that by integrating with respect to y instead of
x, we only had to do one integral and did not need to find the point at which to
switch from one integration to another.

This calculus‐based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 6.1.5 computes the area of a trian‐
gle. While the formula “ 12 × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Example 6.1.5 Finding the area of a triangle
Compute the area of the regions bounded by the lines

y = 3− x

y = x+ 1

y = 5x− 15

2 4 6

2

4

x

y

Figure 6.1.7: Graphing a triangular re‐
gion in Example 6.1.5.

y = 3− x, y = x+ 1 and
y = 5x− 15, as shown in Figure 6.1.7.

SOLUTION Recognize that there are two “bottom” functions to this re‐
gion, causing us to use two definite integrals.

Total Area =

∫ 3

1

(
(x+ 1)− (3− x)

)
dx+

∫ 4

3

(
(x+ 1)− (5x− 15)

)
dx

= 4+ 2 = 6.

We can also approach this by converting each function into a function of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstration purposes.

Notes:

296



6.1 Area Between Curves

The “top” function is always x = y
5 + 3 while there are two “bottom” func‐

tions: x = 3− y and x = y− 1. Being mindful of the proper integration bounds,
we have

Total Area =

∫ 2

0

(( y
5
+ 3
)
− (3− y)

)
dy+

∫ 5

2

(( y
5
+ 3
)
− (y− 1)

)
dy

=
12
5

+
18
5

= 6.

Of course, the final answer is the same (and we see that integrating with respect
to x was probably easier, since it avoided fractions).

In the next section we apply Key Idea 6.0.1 to finding the volumes of certain
solids.
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Exercises 6.1
Terms and Concepts

1. T/F: The area between curves is always positive.

2. T/F: Calculus can be used to find the area of basic geomet‐
ric shapes.

3. In your own words, describe how to find the total area en‐
closed by y = f(x) and y = g(x).

4. Describe a situation where it is advantageous to find an
area enclosed by curves through integration with respect
to y instead of x.

Problems

In Exercises 5–10, find the area of the shaded region in the giv‐
en graph.

5.

y = 1
2 cos x + 1

y = 1
2 x + 3

2

4

6

π 2π
x

y

6.

y = x2 + x − 1

y = −3x3 + 3x + 2

−1 1
−1

1

2

3

x

y

7.

y = 1

y = 2

1

2

ππ/2
x

y

8.

y = sin x

y = sin x + 1

1

2

ππ/2
x

y

9.

y = sin(4x)

y = sec2 x

1

2

π/4π/8
x

y

10. y = sin x

y = cos x

−1

−0.5

0.5

1

π/4 π/2 3π/4 π 5π/4
x

y

In Exercises 11–24, find the area of the region bounded by the
given curves.
11. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1
12. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3
13. f(x) = sin x, g(x) = 2x/π
14. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4
15. f(x) = x, g(x) =

√
x

16. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3
17. x = 2y2, x+ y = 1
18. x = y2 − 1, x = 1− y2

19. 4x+ y2 = 12, x = y
20. x = y2 − 4y, x = 2y− y2

21. y = 2x, y = 5x, x = 3.
22. y = −x+ 1, y = 3x+ 6, x = 2 x = −1.
23. y = x2 − 2x+ 5, y = 5x− 5.
24. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.
25. The functions f(x) = cos(x) and g(x) = sin x intersect infi‐

nitely many times, forming an infinite number of repeated,
enclosed regions. Find the areas of these regions.

26. The functions f(x) = cos(2x) and g(x) = sin x intersect in‐
finitely many times, forming an infinite number of repeat‐
ed, enclosed regions. Find the areas of these regions.

In Exercises 27–32, find the area of the enclosed region in two
ways:

(a) by treating the boundaries as functions of x, and
(b) by treating the boundaries as functions of y.

27.

1 2 3

1

2

y = x2 + 1
y = 1

4 (x − 3)2 + 1

y = 1

x

y

28. y =
√
x

y = −2x + 3

y = − 1
2 x

1 2

−1

−0.5

0.5

1

x

y
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29.

y = x2

y = x + 2

−1 1 2

2

4

x

y

30.

x = 1
2 y

2

x = − 1
2 y + 1

1 2

−2

−1

1

x

y

31. y = x1/3

y =
√

x − 1/2

0.5 1

0.5

1

x

y

32.
y =

√
x + 1 y =

√
2 − x + 1

y = 1

1 2

1

2

x

y

In Exercises 33–36, find the area triangle formed by the given
three points.

33. (1, 1), (2, 3), and (3, 3)
34. (−1, 1), (1, 3), and (2,−1)
35. (1, 1), (−1, 3), and (3, 3)
36. (0, 0), (2, 5), and (5, 2)
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6.2 Volume by Cross‐Sectional Area;
Disk and Washer Methods

The volume of a general right cylinder, as shown in Figure 6.2.1, is

Area of the base× height.

Figure 6.2.1: The volume of a general
right cylinder is the product of its height
and its base’s area

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross‐
sectional area× thickness.

By orienting a solid along the x‐axis, we can let A(xi) represent the cross‐
sectional area of the i th slice, and let∆x represent the thickness of the slices (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆x.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Volume = lim
n→∞

n∑
i=1

A(xi)∆x

with∆x = b−a
n and xi = a+ i∆x. We recognize this as a definite integral.

Theorem 6.2.1 Volume By Cross‐Sectional Area
The volume V of a solid, oriented along the x‐axis with cross‐sectional
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

Notes:
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Example 6.2.1 Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length 10 in and a height
of 5 in.

SOLUTION There are many ways to “orient” the pyramid along the x‐
axis; Figure 6.2.2(a) gives one such way, with the pointed top of the pyramid at
the origin and the x‐axis going through the center of the base.

(a)

(b)

Figure 6.2.2: Orienting a pyramid along
the x‐axis (top) and cutting a slice in the
pyramid (bottom) in Example 6.2.1.

Each cross section of the pyramid is a square. To determine its area A(x), we
need to determine the side lengths of the square.

When x = 5, the square has side length 10; when x = 0, the square has side
length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross‐sectional square has side length 2x, giving A(x) = (2x)2 = 4x2.

If one were to cut a slice out of the pyramid at x = 3, as shown in Fig‐
ure 6.2.2(b), one would have a shape with square bottom and top with sloped
sides. If the slice were thin, both the bottom and top squares would have sides
lengths of about 6, and thus the cross‐sectional area of the bottom and top
would be about 36in2. Letting ∆x represent the thickness of the slice, the vol‐
ume of this slice would then be about 36∆xin3.

Cutting the pyramid into n slices divides the total volume into n equally‐
spaced smaller pieces, each with volume (2xi)2∆x, where xi is the approximate
location of the slice along the x‐axis and ∆x represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

Volume ≈
n∑

i=1
(2xi)2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid; recognizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 6.2.1.

We have

V = lim
n→∞

n∑
i=1

(2xi)2∆x

=

∫ 5

0
4x2 dx

=
4
3
x3
∣∣∣5
0

=
500
3

in3.

We can check our work by consulting the general equation for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

Notes:
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1
3 × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus‐based method can be applied to much more than just cones.

An important special case of Theorem 6.2.1 is when the solid is a solid of
revolution, that is, when the solid is formed by rotating a shape around an axis.

Startwith a function y = f(x) from x = a to x = b. Revolving this curve about
a horizontal axis encloses a three‐dimensional solid whose cross sections are
disks (thin circles), perpendicular to the axis of rotation. Let R(x) represent the
radius of the cross‐sectional disk at x; the area of this disk is π[R(x)]2. Applying
Theorem 6.2.1 gives the Disk Method.

Key Idea 6.2.1 The Disk Method
Let a solid be enclosed by revolving the curve y = f(x) from x = a to
x = b around a horizontal axis, and let R(x) be the radius of the cross‐
sectional disk at x. The volume of the solid is

V = π

∫ b

a
[R(x)]2 dx.

Watch the video:
Longer Version — Volumes using Disks/Washers at
https://youtu.be/nZqOKc067Z8

R(x)

1 2

0.5

1

x

y

(a)

(b)

(c)

Figure 6.2.3: Sketching a solid in Exam‐
ple 6.2.2.

Example 6.2.2 Finding volume using the Disk Method
Find the volume of the solid formed by revolving about the x‐axis the region
bounded by the curves y = 1/x, x = 1, x = 2 and the x‐axis.

SOLUTION A sketch is always useful in helping us understand the prob‐
lem. In Figure 6.2.3(a) we have sketched the region we will be rotating. In Fig‐
ure 6.2.3(b), the curve y = 1/x is sketched along with the sample slice, a disk,
at x with radius R(x) = 1/x. In Figure 6.2.3(c) the whole solid is pictured, along
with the sample slice.

Notes:
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6.2 Volume by Cross‐Sectional Area; Disk and Washer Methods

The volume of the sample slice shown in part (b) of the figure is approximate‐
ly πR(xi)2∆x, where R(xi) is the radius of the disk shown and∆x is the thickness
of that slice. The radius R(xi) is the distance from the x‐axis to the curve, hence
R(xi) = 1/xi.

Slicing the solid into n equally‐spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

Approximate volume =

n∑
i=1

π

(
1
xi

)2

∆x.

Taking the limit of the above sum as n → ∞ gives the actual volume; recog‐
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 6.2.1:

V = lim
n→∞

n∑
i=1

π

(
1
xi

)2

∆x

= π

∫ 2

1

(
1
x

)2

dx

= π

∫ 2

1

1
x2

dx

= π

[
−1
x

] ∣∣∣2
1

= π

[
−1
2
− (−1)

]
=

π

2
units3.

While Key Idea 6.2.1 is given in terms of functions of x, the principle involved
can be applied to functions of ywhen the axis of rotation is vertical, not horizon‐
tal. We demonstrate this in the next example.

R(y)

1 2

0.5

1

x

y

(a)

(b)

(c)

Figure 6.2.4: Sketching a solid in Exam‐
ple 6.2.3.

Example 6.2.3 Finding volume using the Disk Method
Find the volume of the solid formed by revolving about the y‐axis the region
bounded by the curves y = 1/x, y = 1, y = 0.5, and the y‐axis.

SOLUTION Since the axis of rotation is vertical, our perpendicular cross
sections have thickness ∆y and radius x = R(y). We need to convert the func‐
tion into a function of y. Since y = 1/x defines the curve, we rewrite it as
x = 1/y.

Notes:
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Thus we are rotating about the y‐axis the region bounded by the curves x =
1/y, y = 1/2, y = 1, and the y‐axis to form a solid. The region of revolution
is sketched in Figure 6.2.4(a), the curve and sample sample disk are sketched in
Figure 6.2.4(b), and a full sketch of the solid is in Figure 6.2.4(b). We integrate
to find the volume:

V = π

∫ 1

1/2

1
y2

dy

= −π

y

∣∣∣1
1/2

= π units3.

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
[R(x)]2 dx− π

∫ b

a
[r(x)]2 dx = π

∫ b

a

(
[R(x)]2 − [r(x)]2

)
dx.

One can generate a solid of revolution with a hole in the middle by revolving
a region about an axis. Consider Figure 6.2.5(a), where a region is sketched along
with a dashed, horizontal axis of rotation. By rotating the region about the axis,
a solid is formed. Each cross section of this solid will be a washer (a disk with a
hole in the center) as sketched in Figure 6.2.5(b). The outside of the washer has
radius R(x), whereas the inside has radius r(x). The entire solid is sketched in
Figure 6.2.5(c). This leads us to the Washer Method.

R(x) r(x)

1 2 3

−2

2

x

y

(a) (b) (c)

Figure 6.2.5: Establishing the Washer Method.

Notes:
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Key Idea 6.2.2 The Washer Method
Let a region bounded by y = f(x), y = g(x), x = a and x = b be rotated
about a horizontal axis that does not intersect the region, forming a solid.
Each cross section at x will be a washer with outside radius R(x) and
inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
[R(x)]2 − [r(x)]2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

R(x)

r(x)

1 2 3

2

4

x

y

(a) (b) (c)

Figure 6.2.6: Sketching the region, a sample slice, and solid in Example 6.2.4.

Example 6.2.4 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the region bounded by y =
x2 − 2x+ 2 and y = 2x− 1 about the x‐axis.

SOLUTION A sketch of the region will help, as given in Figure 6.2.6(a).
Rotating about the x‐axis will produce cross sections in the shape of washers, as
shown in Figure 6.2.6(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x2− 2x+ 2. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute

Notes:
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the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
−x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
−1
5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

=
104
15

π units3.

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.

R(x)

r(x)

1

1
x

y

(a) (b) (c)

Figure 6.2.7: Sketching the region, a sample slice, and the solid in Example 6.2.5.

Example 6.2.5 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the region bounded by y = x2
and x = y2 about the y‐axis.

SOLUTION In Figure 6.2.7 we have a sketch of the region (a), a sample
slice (b), and the solid (c). Rotating about the y‐axis will produce cross sections
in the shape of washers, as shown in (b); the complete solid is shown in part (c).
Since the axis of rotation is vertical, each radius is a function of y. The outside
radius of this washer is R(y) =

√y and the inside radius is r(y) = y2. As the
region is bounded from y = 0 to y = 1, we integrate as follows to compute the

Notes:
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volume.

V = π

∫ 1

0

(
(
√
y)2 − (y2)2

)
dy

= π

∫ 1

0
y− y4 dy

= π

[
1
2
y2 − 1

5
y5
]∣∣∣∣1

0

=
3π
10

units3.

1 2

1

2

3

r(x)

R(x)

x

y

(a) (b) (c)

Figure 6.2.8: Sketching the region, a sample slice, and the solid in Example 6.2.6.

Example 6.2.6 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the triangular region with ver‐
tices at (1, 1), (2, 1) and (2, 3) about the y‐axis.

SOLUTION The triangular region is sketched in Figure 6.2.8(a); the sam‐
ple slice is sketched in (b) and the full solid is drawn in (c). They help us establish
the outside and inside radii. Since the axis of rotation is vertical, each radius is
a function of y.

The outside radius R(y) is formed by the line connecting (2, 1) and (2, 3); it
is a constant function, as regardless of the y‐value the distance from the line to
the axis of rotation is 2. Thus R(y) = 2.

The inside radius is formed by the line connecting (1, 1) and (2, 3). The equa‐
tion of this line is y = 2x−1, but we need to refer to it as a function of y. Solving
for x gives r(y) = 1

2 (y+ 1).

Notes:
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We integrate over the y‐bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y+ 1)

)2) dy
= π

∫ 3

1

(
−1
4
y2 − 1

2
y+

15
4

)
dy

= π
[
− 1
12

y3 − 1
4
y2 +

15
4
y
]∣∣∣3

1

=
10
3
π units3.

In the previous examples, the axis of rotation has either been the x or y ax‐
is. We will now consider a problem where the axis of rotation is some other
horizontal line.

r(x)
R(x)

−1 1 2

1

2

x

y

(a)

(b)

(c)

Figure 6.2.9: Sketching the solid in Exam‐
ple 6.2.7.

Example 6.2.7 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the region bounded by y =

√
x

and y = x about y = 2.

SOLUTION Figure 6.2.9 shows the region we are rotating (a), a sample
slice (b) and the full solid (c). The axis of rotation is horizontal so the radii must
be functions of x. The radii is the distance from the axis of rotation to the curve
so the outside radius of this washer is R(x) = 2 − x and the inside radius is
r(x) = 2−

√
x. The region is bounded from x = 0 to x = 1, thus the volume is

V = π

∫ 1

0

(
(2− x)2 − (2−

√
x)2
)
dx

= π

∫ 1

0
(4− 4x+ x2)− (4− 4

√
x+ x) dx

= π

∫ 1

0
x2 − 5x+ 4

√
x dx

= π

[
1
3
x3 − 5

2
x2 +

8
3
x3/2

]∣∣∣∣1
0

=
π

2
units3.

This section introduced a new application of the definite integral. Our de‐
fault view of the definite integral is that it gives “the area under the curve.” How‐
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.

Notes:
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6.2 Volume by Cross‐Sectional Area; Disk and Washer Methods

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 6.0.1: to find the exact value of some
quantity,

• we start with an approximation (in this section, slice the solid and approx‐
imate the volume of each slice),

• then make the approximation better by refining our original approxima‐
tion (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.

We practice this principle in the next section where we find volumes by slic‐
ing solids in a different way.

Notes:
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Exercises 6.2
Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape
around an axis.

2. In your ownwords, explain how the Disk andWasherMeth‐
ods are related.

3. Explain the how the units of volume are found in the inte‐
gral of Theorem 6.2.1: if A(x) has units of in2, how does∫
A(x) dx have units of in3?

4. A fundamental principle of this section is “ can
be found by integrating an area function.”

Problems

In Exercises 5–8, a region of the Cartesian plane is shaded. Use
the Disk/WasherMethod to find the volume of the solid of rev‐
olution formed by revolving the region about the x‐axis.

5.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

6.

y = 5x

0.5 1 1.5 2

5

10

x

y

7.

y =
√
x

y = x

0.5 1

0.5

1

x

y

8.
y = x3

1 2

2

4

6

8

x

y

In Exercises 9–12, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the y‐axis.

9.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

10.

y = 5x

0.5 1 1.5 2

5

10

x

y

11.

y =
√
x

y = x

0.5 1

0.5

1

x

y
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12.
y = x3

1 2

2

4

6

8

x

y

In Exercises 13–18, a region of the Cartesian plane is described.
Use the Disk/Washer Method to find the volume of the solid
of revolution formed by rotating the region about each of the
given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the x‐axis
(b) y = 1

(c) the y‐axis
(d) x = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) the x‐axis
(b) y = 4

(c) y = −1
(d) x = 2

15. The triangle with vertices (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the x‐axis
(b) y = 2

(c) the y‐axis
(d) x = 1

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the x‐axis
(b) y = 1

(c) y = 5

17. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x‐axis
(b) y = 4

(c) the y‐axis
(d) x = 2

18. Region bounded by y = cos x, x = 0, x = π

4
and the x‐axis.

Rotate about:

(a) the x‐axis
(b) y = 1

(c) y = −1

In Exercises 19–22, a solid is described. Orient the solid along
the x‐axis such that a cross‐sectional area function A(x) can be
obtained, then apply Theorem 6.2.1 to find the volume of the
solid.

19. A right circular cone with height of 10 and base radius of 5.

5

10

20. A skew right circular conewith height of 10 and base radius
of 5. (Hint: all cross‐sections are circles.)

5

10

21. A right triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

4 4

10

22. A solid with length 10 with a rectangular base and triangu‐
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

10

5
5

5
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6.3 The Shell Method
Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com‐
puted the volume of solids of revolution by integrating the cross‐sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross‐sections, we now slice it parallel to the axis of rotation, creating
“shells.”y = 1

1+x2

0.5 1

0.5

1

x

y

(a)

(b)

(c)

Figure 6.3.1: Introducing the Shell Meth‐
od.

Consider Figure 6.3.1, where the region shown in (a) is rotated around the
y‐axis forming the solid shown in (c). A small slice of the region is drawn in (a),
parallel to the axis of rotation. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (b) of the figure. The previous section
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 6.3.2(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth∆x. Thus the volume isV ≈ 2πrh∆x; see Fig‐
ure 6.3.2(b). (We say “approximately” since our radius was an approximation.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V ≈
n∑

i=1
2πrihi∆x,

where ri, hi and∆x are the radius, height and thickness of the i th shell, respec‐
tively.

This is a Riemann Sum. Taking a limit as the thickness of the shells approach‐
es 0 leads to a definite integral.

V = lim
n→∞

n∑
i=1

2πrihi∆x

= 2π
∫ b

a
r(x)h(x) dx

Notes:

312



6.3 The Shell Method

h

cu
th
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r
2πr

hA = 2πrh
h
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er
e

r
∆x

2πr

h

∆x

V ≈ 2πrh∆x

(a) (b)

Figure 6.3.2: Determining the volume of a thin cylindrical shell.

Key Idea 6.3.1 The Shell Method
Let a solid be formed by revolving a region R, bounded by x = a and x =
b, around a vertical axis. Let r(x) represent the distance from the axis of
rotation to x (i.e., the radius of a sample shell) and let h(x) represent the
height of the solid at x (i.e., the height of the shell). The volume of the
solid is

V = 2π
∫ b

a
r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotation is the y‐axis (i.e., x = 0) then r(x) = x.

Watch the video:
Volumes of Revolution — Cylindrical Shells at
https://youtu.be/V6nTsxumjgU

Let’s practice using the Shell Method.

Notes:
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Example 6.3.1 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region bounded by y = 0,
y = 1/(1+ x2), x = 0 and x = 1 about the y‐axis.

h(x)

︸ ︷︷ ︸
r(x)

y =
1

1 + x2

1

1

x
x

y

Figure 6.3.3: Graphing a region in Exam‐
ple 6.3.1.

SOLUTION This is the region used to introduce the Shell Method in Fig‐
ure 6.3.1, but is sketched again in Figure 6.3.3 for closer reference. A line is
drawn in the region parallel to the axis of rotation representing a shell that will
be carved out as the region is rotated about the y‐axis.

The distance this line is from the axis of rotation determines r(x); as the
distance from x to the y‐axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = 1/(1 + x2), whereas the bottom
of the line is at y = 0. Thus h(x) = 1/(1+ x2)− 0 = 1/(1+ x2). The region is
bounded from x = 0 to x = 1, so the volume is

V = 2π
∫ 1

0

x
1+ x2

dx.

This requires substitution. Let u = 1 + x2, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1
u
du

= π ln u
∣∣∣2
1

= π ln 2 units3.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com‐
pute the volume of a solid that has a hole in the middle, as demonstrated next.

y =
2x

+
1

h(x).︸ ︷︷ ︸
r(x)

1 2 3

1

2

3

x
x

y

(a)

(b)

(c)

Figure 6.3.4: Graphing a region in Exam‐
ple 6.3.2.

Example 6.3.2 Finding volume using the Shell Method
Find the volumeof the solid formed by rotating the triangular region determined
by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

SOLUTION The region is sketched in Figure 6.3.4(a) along with a line
within the region parallel to the axis of rotation. In part (b) of the figure, we see
a sample shell, and in part (c) the whole solid is shown.

The height of the sample shell is the distance from y = 1 to y = 2x+ 1, the
line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1−1 = 2x. The
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6.3 The Shell Method

radius of the sample shell is the distance from x to x = 3; that is, it is r(x) = 3−x.
The x‐bounds of the region are x = 0 to x = 1, giving

V = 2π
∫ 1

0
(3− x)(2x) dx

= 2π
∫ 1

0

(
6x− 2x2

)
dx

= 2π
(
3x2 − 2

3
x3
)∣∣∣∣1

0

=
14
3
π units3.

When revolving a region around a horizontal axis, we must consider the ra‐
dius and height functions in terms of y, not x.

x =
1
2
y−

1
2

︸ ︷︷ ︸
h(y)


r(y)

1

1

2

3

y

x

y

(a)

(b)

(c)

Figure 6.3.5: Graphing a region in Exam‐
ple 6.3.3.

Example 6.3.3 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region given in Example 6.3.2
about the x‐axis.

SOLUTION The region is sketched in Figure 6.3.5(a). In part (b) of the
figure the sample shell is drawn, and the solid is sketched in (c). (Note that the
triangular region looks “short and wide” here, whereas in the previous example
the same region looked “tall and narrow.” This is because the bounds on the
graphs are different.)

The height of the sample shell is an x‐distance, between x = 1
2y −

1
2 and

x = 1. Thus h(y) = 1 − ( 12y −
1
2 ) = − 1

2y +
3
2 . The radius is the distance from

y to the x‐axis, so r(y) = y. The y bounds of the region are y = 1 and y = 3,
leading to the integral

V = 2π
∫ 3

1

[
y
(
−1
2
y+

3
2

)]
dy

= 2π
∫ 3

1

[
−1
2
y2 +

3
2
y
]
dy

= 2π
[
−1
6
y3 +

3
4
y2
]∣∣∣∣3

1

= 2π
[
9
4
− 7

12

]
=

10
3
π units3.
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The following example shows how there are times when it does not matter
whichmethod you choose to evaluate the volume of a solid. In Example 6.2.7we
found the volume of the solid formed by rotating the region bounded by y =

√
x

and y = x about y = 2. We will now demonstrate how to find the volume with
the shell method. Note that your answer should be the samewhichevermethod
you choose.

Example 6.3.4 Using the shell method instead of the washer method
Find the volume of the solid formed by rotating the region bounded by y =

√
x

and y = x about y = 2 using the Shell Method.

SOLUTION Since our shells are parallel to the axis of rotation, we must
consider the radius and height functions in terms of y. The radius of a sample
shell will be r(y) = 2− y and the height of a sample shell will be h(y) = y− y2.
The y bounds for the region will be y = 0 to y = 1 resulting in the integral

V = 2π
∫ 1

0
(2− y)(y− y2) dy

= 2π
∫ 1

0
y3 − 3y2 + 2y dy

=
π

2
units3.

At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

h(x)

︸ ︷︷ ︸
r(x)

1

2

1 2 3
x

y

(a)

(b)

(c)

Figure 6.3.6: Graphing a region in Exam‐
ple 6.3.5.

Example 6.3.5 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region bounded by y =
3x− x2 and y = x about the y‐axis.

SOLUTION The region, a sample shell, and the resulting solid are shown
in Figure 6.3.6. The radius of a sample shell is r(x) = x; the height of a sample
shell is h(x) = (3x − x2) − x = 2x − x2. The x bounds on the region are x = 0

Notes:
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to x = 2 leading to the integral

V = 2π
∫ 2

0
x(2x− x2) dx

= 2π
∫ 2

0
2x2 − x3 dx

= 2π
[
2
3
x3 − 1

4
x4
]∣∣∣∣2

0

=
8π
3
units3.

Note that in order to use the Washer Method, we would need to solve y =
3x − x2 for x, requiring us to complete the square. We must evaluate two in‐
tegrals as we have two different sample slices. The volume can be computed
as

V = π

∫ 2

0

y2 −

(
3
2
−
√

9
4
− y

)2
 dy

+ π

∫ 9/4

2

(3
2
+

√
9
4
− y

)2

−

(
3
2
−
√

9
4
− y

)2
 dy

While this integral is not impossible to solve, using the Shell Method gave us a
significantly easier way to compute the volume.

We finish with an example where we can use either method to find the vol‐
ume.

Example 6.3.6 Finding volume using both methods
Find the volume of the solid formed by rotating the region bounded by the
curves y = x2 + 3, y = 2x + 1, x = 0, and x = 1 about the y‐axis using
both the washer method and the shell method.

SOLUTION We’ll start with the shell method, since that turns out to
be easier. The region, a sample shell, and the resulting solid are shown in Fig‐
ure 6.3.7 parts a, b, and e respectively. The volume is

V = 2π
∫ 1

0
x((x2 + 3)− (2x+ 1)) dx =

7π
6
units3.

With the washer method, we need to integrate with respect to y because
we are rotating around a vertical axis. We also need to divide the region in two

Notes:
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because the washers will run into different boundaries at different heights. We
have indicated the region and the two different types of washers in Figure 6.3.7
parts c and d. The volume is

V = π

∫ 3

1

(
y− 1
2

)2

dy+ π

∫ 4

3

(
12 −

(√
y− 3

)2)
dy

= π
2
3
+ π

1
2
=

7π
6
units3.

We are reassured to find the same answer using either method.

︸ ︷︷ ︸
r(x)

}
h(x)

1

2

3

4

1
x

y

(a) (b)

r(x)

R(x)

1

2

3

4

1
x

y

(c) (d) (e)

Figure 6.3.7: Graphing the region in Example 6.3.6.

As in the previous section, the real goal of this section is not to be able to

Notes:
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6.3 The Shell Method

compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value.

Notes:
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Exercises 6.3
Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape
around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integrating cross‐sectional
areas of a solid.

4. T/F: When finding the volume of a solid of revolution that
was revolved around a vertical axis, the Shell Method inte‐
grates with respect to x.

Problems

In Exercises 5–8, a region of the Cartesian plane is shaded. Use
the Shell Method to find the volume of the solid of revolution
formed by revolving the region about the y‐axis.

5.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

6.

y = 5x

0.5 1 1.5 2

5

10

x

y

7.
y = x3

1 2

2

4

6

8

x

y

8.

y =
√
x

y = x

0.5 1

0.5

1

x

y

In Exercises 9–12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revolu‐
tion formed by revolving the region about the x‐axis.

9.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

10.

y = 5x

0.5 1 1.5 2

5

10

x

y

11.
y = x3

1 2

2

4

6

8

x

y
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12.

y =
√
x

y = x

0.5 1

0.5

1

x

y

In Exercises 13–18, a region of the Cartesian plane is described.
Use the Shell Method to find the volume of the solid of revo‐
lution formed by rotating the region about each of the given
axes.
13. Region bounded by: y =

√
x, y = 0 and x = 1.

Rotate about:

(a) the y‐axis
(b) x = 1

(c) the x‐axis
(d) y = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) x = 2
(b) x = −2

(c) the x‐axis
(d) y = 4

15. The triangle with vertices (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the y‐axis
(b) x = 1

(c) the x‐axis
(d) y = 2

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the y‐axis
(b) x = 1

(c) x = −1

17. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the y‐axis
(b) x = 2

(c) the x‐axis
(d) y = 4

18. Region bounded by y = 1+ cos(x2), x = 0, x =
√
3π, and

y = 0 about the y‐axis.

In Exercises 19–21, use your choice of the Washer or Shell
Method to find the indicated volume.

19. Region bounded by y = x4, y = 0, and x = 1.
Rotate about:

(a) the y‐axis (a) the x‐axis

20. Region bounded by y = x3 + 1, x = 0, and y = 2.
Rotate about:

(a) the y‐axis (a) y = 2

21. Region bounded by y = 4x2 and 4x+ y = 8.
Rotate about

(a) the x‐axis
(b) x = 1

(a) y = 16
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Chapter 6 Applications of Integration

6.4 Work

Work is the scientific term used to describe the action of a force whichmoves an
object. When a constant force F is applied to move an object a distance d, the
amount of work performed isW = F · d.

The SI unit of force is the newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one newton‐meter, or a joule (J).
That is, applying a force of one newton for onemeter performs one joule ofwork.
In Imperial units (as used in the United States), force is measured in pounds (lb)
and distance is measured in feet (ft), hence work is measured in ft‐lb.

Note: Mass and weight are closely
related, yet different, concepts. The
massm of an object is a quantitative
measure of that object’s resistance
to acceleration. The weight w of
an object is a measurement of the
force applied to the object by the
acceleration of gravity g.

Since the two measurements are
proportional, w = m · g, they are
often used interchangeably in every‐
day conversation. When computing
work, one must be careful to note
which is being referred to. When
mass is given, it must be multiplied
by the acceleration of gravity to ref‐
erence the related force.

When force is constant, the measurement of work is straightforward. For
instance, lifting a 200 lb object 5 ft performs 200 · 5 = 1000 ft‐lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 ft rope up a vertical face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force function on an interval [a, b]. We want to mea‐
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by partitioning [a, b] into subinter‐
vals a = x0 < x1 < · · · < xn = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1
F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

Key Idea 6.4.1 Work
Let F(x)be a continuous functionon [a, b]describing the amount of force
being applied to an object in the direction of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:
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6.4 Work

Watch the video:
Finding Work using Calculus — The Cable/Rope
Problem at
https://youtu.be/2pbInn9PkHQ

Example 6.4.1 Computing work performed: applying variable force
A 60 m climbing rope is hanging over the side of a tall cliff. How much work is
performed in pulling the rope up to the top, where the rope has a mass of 66
g/m?

SOLUTION We need to create a force function F(x) for 0 ≤ x ≤ 60.
To do so, we must first decide what x is measuring: is it the length of the rope
still hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convention that x is the
amount of rope pulled in. This seems to match intuition better; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope still hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The the mass of the
rope still hanging is 0.066(60− x) kg; multiplying this mass by the acceleration
of gravity, 9.8 m/s2, gives our variable force function

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in lifting the entire rope 60 meters.
The ropeweights 60×0.066×9.8 = 38.808N, so thework applying this force for
60 meters is 60×38.808 = 2, 328.48 J. This is exactly twice the work calculated
before (and we leave it to the reader to understand why.)

Example 6.4.2 Computing work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SOLUTION From Example 6.4.1 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 582.12, half the total work. Thus

Notes:
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we want to solve for h in the equation∫ h

0
0.6468(60− x) dx = 582.12.

We see that∫ h

0
0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12
−0.3234h2 + 38.808h− 582.12 = 0 (Apply the Quadratic Formula)

h ≈ 17.57 and 102.43

Note: In Example 6.4.2, we find that
half of the work performed in pulling
up a 60 m rope is done in the last
42.43 m. Why is it not coincidental
that 60/

√
2 = 42.43?

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.57m the other half of the work is
done pulling up the remaining 42.43m.

Example 6.4.3 Computing work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50 ft
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/ft.

1. How much work is done lifting just the rope?

2. How much work is done lifting just the box and sand?

3. What is the total amount of work performed?

SOLUTION

1. We start by forming the force function Fr(x) for the rope (where the sub‐
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the acceleration of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
lifting the rope is

Wr =

∫ 50

0
(10− 0.2x) dx = 250 ft‐lb.

Notes:
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6.4 Work

2. The sand is leaving the box at a rate of 1 lb/s. As the vertical trip is to take
oneminute, we know that 60 lbwill have leftwhen the box reaches its final
height of 50 ft. Again letting x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equation of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force function is Fb(x) = −1.2x+105. Integrating from x = 0
to x = 50 gives the work performed in lifting box and sand:

Wb =

∫ 50

0
(−1.2x+ 105) dx = 3750 ft‐lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 ft‐lb. We
can also arrive at this via integration:

W =

∫ 50

0
(Fr(x) + Fb(x)) dx

=

∫ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0
(−1.4x+ 115) dx

= 4000 ft‐lb.

Hooke’s Law and Springs
Hooke’s Law states that the force required to compress or stretch a spring x units
from its natural length is proportional to x; that is, this force is F(x) = kx for some
constant k. For example, if a force of 1 N stretches a given spring 2 cm, then a
force of 5 Nwill stretch the spring 10 cm. Converting the distances tometers, we
have that stretching this spring 0.02m requires a force of F(0.02) = k(0.02) = 1
N, hence k = 1/0.02 = 50 N/m.

Example 6.4.4 Computing work performed: stretching a spring
A force of 20 lb stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

SOLUTION In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care
that 20 lb of force stretches the spring to a length of 12 inches, but rather that

Notes:
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a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 6.4.1;
we only measure the change in the spring’s length, not the overall length of the
spring.

F

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Figure 6.4.1: Illustrating the important aspects of stretching a spring in computing work
in Example 6.4.4.

Converting the units of length to feet, we have

F(5/12) = (5/12)k = 20 lb.

Thus k = 48 lb/ft and F(x) = 48x.
We compute the total work performed by integrating F(x) from x = 0 to

x = 5/12:

W =

∫ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ft‐lb.

Pumping Fluids
Fluid lb/ft3 kg/m3

Gasoline 45.93 737.22
Methanol 49.3 791.3
Fuel Oil 55.46 890.13
Water 62.4 1000
Milk, whole 63.6 1020
Milk, nonfat 65.4 1050
Concrete 150 2400
Iodine 307 4927
Mercury 844 13546

Figure 6.4.2: Weight and Mass densities

Another useful example of the applicationof integration to computework comes
in the pumping of fluids, often illustrated in the context of emptying a storage
tank by pumping the fluid out the top. This situation is different than our previ‐
ous examples for the forces involved are constant. After all, the force required
to move one cubic foot of water (about 62.4 lb) is the same regardless of its lo‐
cation in the tank. What is variable is the distance that cubic foot of water has
to travel; water closer to the top travels less distance than water at the bottom,
producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:
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6.4 Work

Example 6.4.5 Computing work performed: pumping fluids
A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is filled with
water, which weighs approximately 62.4 lb/ft3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SOLUTION We will refer often to Figure 6.4.3 which illustrates the sali‐
ent aspects of this problem.

y

0

30

35

35
−

y i

10

yi

yi+1}
∆yi

Figure 6.4.3: Illustrating a water tank in
order to compute the work required to
empty it in Example 6.4.5.

We start aswe often do: we partition an interval into subintervals. We orient
our tank vertically since this makes intuitive sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y‐interval [0, 30] into n subintervals as

0 = y0 < y1 < · · · < yn = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 6.4.3. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/ft3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y‐value con‐
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not matter later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 ft. Thus the distance the water at
height yi travels is 35− yi ft.

In all, the approximate work Wi performed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the workWi performed in pumping the water from each of the
n subintervals of [0, 30]:

W ≈
n∑

i=1
Wi =

n∑
i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

∫ 30

0
6240π(35− y) dy

= 6240π
(
35y− y2

2

) ∣∣∣30
0

= 11, 762, 123 ft‐lb
≈ 1.176× 107 ft‐lb.

Notes:
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y

0

30

35

y

35
−

y

10

V(y) = 100π dy

Figure 6.4.4: A simplified illustration for
computing work.

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 6.4.4 shows the tank from
Example 6.4.5 without the i th subinterval identified. Instead, we just draw a
sample slice. This helps establish the height a small amount of watermust travel
along with the force required to move it (where the force is volume× density).

We demonstrate the concepts again in the next examples.

Example 6.4.6 Computing work performed: pumping fluids
A conical water tank has its top at ground level and its base 10 feet below ground.
The radius of the cone at ground level is 2 ft. It is filled with water weighing 62.4
lb/ft3 and is to be emptied by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SOLUTION The conical tank is sketched in Figure 6.4.5. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convention
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the bottom of the tank. The actual “height” of the
water does not matter; rather, we are concerned with the distance the water
travels.

y

−10

0

3

y

3
−

y

2

V(y) = π( y
5 + 2)2 dy

Figure 6.4.5: A graph of the conical wa‐
ter tank in Example 6.4.6.

The figure also sketches a cross‐sectional circle. The radius of this circle is
variable, depending on y. When y = −10, the circle has radius 0; when y = 0,
the circle has radius 2. These two points, (−10, 0) and (0, 2), allow us to find
the equation of the line that gives the radius of the cross‐sectional circle, which
is r(y) = y/5 + 2. Hence the volume of water at this height is V(y) = π(y/5 +
2)2 dy, where dy represents a very small height of the slice. The force required
to move the water at height y is F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the
total work done in pumping the water from the tank is

W =

∫ 0

−10
62.4π(y/5+ 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

ft‐lb.

Notes:
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6.4 Work

Example 6.4.7 Computing work performed: pumping fluids
A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end” and a 6 ft
“deep end.” It is to have its water pumped out to a point 2 ft above the current
top of the water. The cross‐sectional dimensions of the water in the pool are
given in Figure 6.4.6(a). (Note that the “20 ft wide” is into the picture; the pool
is 25 ft long.) Compute the amount of work performed in draining the pool.

SOLUTION For the purposes of this problem we choose to set y = 0 to
represent the bottom of the pool, meaning the top of the water is at y = 6.

10 ft. (a)

10 ft.

3 ft.

25 ft

6 ft.

y

0
y
3

6
8

(b)

(10, 0)

(15, 3)

x
0 10 15

Figure 6.4.6: The cross‐section of a swim‐
ming pool filled with water in Exam‐
ple 6.4.7 and two sample slices.

Fig‐
ure 6.4.6(b) shows the pool oriented with this y‐axis, along with 2 sample slices
as the pool must be split into two different regions.

The top region lies in the y‐interval of [3, 6], where the length of the sample
slice is 25 ft as shown. As the pool is 20 ft wide, this sample slice of water has a
volume of V(y) = 20 ·25 ·dy. The water is to be pumped to a height of y = 8, so
the height function is h(y) = 8 − y. The work done in pumping this top region
of water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 ft‐lb.

The bottom region lies in the y‐interval of [0, 3]; we need to compute the
length of the sample slice in this interval.

One end of the sample slice is at x = 0 and the other is along the line seg‐
ment joining the points (10, 0) and (15, 3). The equation of this line is y =
3(x − 10)/5; as we will be integrating with respect to y, we rewrite this equa‐
tion as x = 5y/3+10. So the length of the sample slice is a difference of x‐values:
x = 0 and x = 5y/3+ 10, giving a length of x = 5y/3+ 10.

Again, as the pool is 20 ft wide, this slice of water has a volume of V(y) =
20 · (5y/3+ 10) · dy; the height function is the same as before at h(y) = 8− y.
The work performed in emptying this part of the pool is

Wb = 62.4
∫ 3

0
20(5y/3+ 10)(8− y) dy = 299, 520 ft‐lb.

The total work in emptying the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 ft‐lb.

Notice how the emptying of the bottom of the pool performs almost as much
work as emptying the top. The top portion travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next section introduces one final application of the definite integral, the
calculation of fluid force on a plate.

Notes:
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Exercises 6.4
Terms and Concepts
1. What are the typical units of work?
2. If a man has a mass of 80 kg on Earth, will his mass on the

moon be bigger, smaller, or the same?
3. If a woman weighs 130 lb on Earth, will her weight on the

moon be bigger, smaller, or the same?
4. Fill in the blanks:

Some integrals in this section are set up by multiplying a
variable by a constant distance; others are set
up by multiplying a constant force by a variable .

Problems
5. A 100 ft rope, weighing 0.1 lb/ft, hangs over the edge of a

tall building.
(a) Howmuchwork is done pulling the entire rope to the

top of the building?
(b) How much rope is pulled in when half of the total

work is done?

6. A 50 m rope, with a mass of 0.2 kg/m, hangs over the edge
of a tall building.
(a) Howmuchwork is done pulling the entire rope to the

top of the building?
(b) How much work is done pulling in the first 20 m?

7. A rope of length ℓ ft hangs over the edge of tall cliff. (As‐
sume the cliff is taller than the length of the rope.) The
rope weighs d lb/ft.
(a) Howmuchwork is done pulling the entire rope to the

top of the cliff?
(b) What percentage of the total work is done pulling in

the first half of the rope?
(c) How much rope is pulled in when half of the total

work is done?

8. A 20m ropewith amass of 0.5 kg/mhangs over the edge of
a 10 m building. How much work is done pulling the rope
to the top?

9. A crane lifts a 2,000 lb load vertically 30 ft with a 1” cable
weighing 1.68 lb/ft.
(a) How much work is done lifting the cable alone?
(b) How much work is done lifting the load alone?
(c) Could one conclude that the work done lifting the ca‐

ble is negligible compared to the work done lifting
the load?

10. A 100 lb bag of sand is lifted uniformly 120 ft in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in lifting the bag?

11. A boxweighing 2 lb lifts 10 lb of sand vertically 50ft. A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in lifting
the box and sand?

12. A force of 1000 lb compresses a spring 3 in. How much
work is performed in compressing the spring?

13. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

14. A force of 50 lb compresses a spring from a natural length
of 18 in to 12 in. Howmuchwork is performed in compress‐
ing the spring?

15. A force of 20 lb stretches a spring from a natural length of
6 in to 8 in. Howmuch work is performed in stretching the
spring?

16. A force of 7 N stretches a spring from a natural length of 11
cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring dm from its natural length.
How much work is performed in stretching the spring?

18. A 20 lb weight is attached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 ft to 6 in.
How much work is done in lifting the box 1.5 ft (i.e, the
spring will be stretched 1 ft beyond its natural length)?

19. A 20 lb weight is attached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 ft to 6 in.
How much work is done in lifting the box 6 in (i.e, bringing
the spring back to its natural length)?

20. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass of 737.22 kg/m3. Compute the
total work performed in pumping all the gasoline to the top
of the tank.

21. A 6 ft cylindrical tank with a radius of 3 ft is filled with wa‐
ter, which weighs 62.4 lb/ft3. The water is to be pumped
to a point 2 ft above the top of the tank.
(a) How much work is performed in pumping all the wa‐

ter from the tank?
(b) How much work is performed in pumping 3 ft of wa‐

ter from the tank?
(c) At what point is 1/2 of the total work done?

22. A gasoline tanker is filled with gasoline which weighs 45.93
lb/ft3. The dispensing valve at the base is jammed shut,
forcing the operator to empty the tank via pumping the gas
to a point 1 ft above the top of the tank. Assume the tank is
a perfect cylinder, 20 ft long with a diameter of 7.5 ft. How
much work is performed in pumping all the gasoline from
the tank?
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23. A fuel oil storage tank is 10 ft deep with trapezoidal sides, 5
ft at the top and 2 ft at the bottom, and is 15 ftwide (see di‐
agram below). Given that fuel oil weighs 55.46 lb/ft3, find
the work performed in pumping all the oil from the tank to
a point 3 ft above the top of the tank.

10

2

15

5

24. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 6.4.6.) The tank is filled with
pure water, with a mass of 1000 kg/m3.
(a) Find the work performed in pumping all the water to

the top of the tank.
(b) Find the work performed in pumping the top 2.5 m

of water to the top of the tank.
(c) Find the work performed in pumping the top half of

the water, by volume, to the top of the tank.

25. A water tank has the shape of a truncated cone, with
dimensions given below, and is filled with water which
weighs 62.4 lb/ft3. Find the work performed in pumping
all water to a point 1 ft above the top of the tank.

2 ft

5 ft
10 ft

26. A water tank has the shape of an inverted pyramid, with di‐
mensions given below, and is filled with water with a mass
of 1000 kg/m3. Find the work performed in pumping all
water to a point 5 m above the top of the tank.

2 m

2 m

7 m

27. A water tank has the shape of a truncated, inverted pyra‐
mid, with dimensions given below, and is filled with water
with a mass of 1000 kg/m3. Find the work performed in
pumping all water to a point 1 m above the top of the tank.

5 m

5 m

2 m

2 m

9 m
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Chapter 6 Applications of Integration

6.5 Fluid Forces
In the unfortunate situation of a car driving into a body of water, the convention‐
al wisdom is that the water pressure on the doors will quickly be so great that
they will be effectively unopenable. (Survival techniques suggest immediately
opening the door, rolling down or breaking the window, or waiting until the wa‐
ter fills up the interior at which point the pressure is equalized and the door will
open. See Mythbusters episode #72 to watch Adam Savage test these options.)

How can this be true? How much force does it take to open the door of
a submerged car? In this section we will find the answer to this question by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equations:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definition.

Definition 6.5.1 Fluid Pressure
Let w be the weight‐density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definition to find the force exerted on a horizontal sheet by con‐
sidering the sheet’s area.

Watch the video:
Calculating the Fluid Force on a Semi‐Circle at
https://youtu.be/dNYbyKQQmQ4

2 ft

10
ft

Figure 6.5.1: A cylindrical tank in Exam‐
ple 6.5.1.

Example 6.5.1 Computing fluid force

1. A cylindrical storage tank has a radius of 2 ft and holds 10 ft of a fluid with
a weight‐density of 50 lb/ft3. (See Figure 6.5.1.) What is the force exerted
on the base of the cylinder by the fluid?

2. A rectangular tank whose base is a 5 ft square has a circular hatch at the

Notes:
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6.5 Fluid Forces

bottom with a radius of 2 ft. The tank holds 10 ft of a fluid with a weight‐
density of 50 lb/ft3. (See Figure 6.5.2.) What is the force exerted on the
hatch by the fluid?

5 ft
5 ft

2 ft

10
ft

Figure 6.5.2: A rectangular tank in Exam‐
ple 6.5.1.

SOLUTION

1. Using Definition 6.5.1, we calculate that the pressure exerted on the cylin‐
der’s base isw · d = 50 lb/ft3 × 10 ft = 500 lb/ft2. The area of the base is
π · 22 = 4π ft2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effectively just computed theweight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con‐
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 lb.
A key concept to understand here is that we are effectively measuring the
weight of a 10 ft column of water above the hatch. The size of the tank
holding the fluid does not matter.

The previous example demonstrates that computing the force exerted on a
horizontally oriented plate is relatively easy to compute. What about a vertically
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all directions. Thus the pressure on any portion of a plate that is 1
ft below the surface of water is the same no matter how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

}
∆yi

ℓ(ci)

di

Figure 6.5.3: A thin, vertically oriented
plate submerged in a fluid with weight‐
density w.

So consider a vertically oriented plate as shown in Figure 6.5.3 submerged in
a fluid with weight‐densityw. What is the total fluid force exerted on this plate?
We find this force by first approximating the force on small horizontal strips.

Let the top of the plate be at depth b and let the bottom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the bottom of the
plate is 3 ft under the surface, we have a = −3. We will come back to this later.)
We partition the interval [a, b] into n subintervals

a = y0 < y1 < . . . < yn = b,

Notes:
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Chapter 6 Applications of Integration

with the i th subinterval having length ∆yi. The force Fi exerted on the plate in
the i th subinterval is Fi = Pressure× Area.

The pressure is depth ×w. We approximate the depth of this thin strip by
choosing any value di in [yi, yi+1]; the depth is approximately −di. (Our conven‐
tion has di being a negative number, so−di is positive.) For convenience, we let
di be an endpoint of the subinterval; we let di = yi.

The area of the thin strip is approximately length× width. The width is∆yi.
The length is a function of some y‐value ci in the i th subinterval. We state the
length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each of the
n thin strips:

F =
n∑

i=1
Fi ≈

n∑
i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

Key Idea 6.5.1 Fluid Force on a Vertically Oriented Plate
Let a vertically oriented plate be submerged in a fluid with weight‐
density w where the top of the plate is at y = b and the bottom is at
y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
∫ b

a
w · (−y) · ℓ(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F =
∫ b

a
w · d(y) · ℓ(y) dy.

Notes:
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6.5 Fluid Forces

Example 6.5.2 Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure 6.5.4
submerged in water with a 4 ft

4
ft

Figure 6.5.4: A thin plate in the shape of
an isosceles triangle in Example 6.5.2.

weight‐density of 62.4 lb/ft3. If the bottom of the
plate is 10 ft below the surface of the water, what is the total fluid force exerted
on this plate?

SOLUTION We approach this problem in two different ways to illustrate
the different ways Key Idea 6.5.1 can be implemented. First we will let y = 0
represent the surface of the water, then we will consider an alternate conven‐
tion.

(2,−6)(−2,−6)

y

water line

d
(y)

=
10

−
y

−2 −1 1 2

−10

−8

−4

−2

x

y

Figure 6.5.5: Sketching the triangular
plate in Example 6.5.2 with the conven‐
tion that the water level is at y = 0.

1. We let y = 0 represent the surface of the water; therefore the bottom of
the plate is at y = −10. We center the triangle on the y‐axis as shown in
Figure 6.5.5. The depth of the plate at y is−y as indicated by the Key Idea.
We now consider the length of the plate at y.
Weneed to find equations of the left and right edges of the plate. The right
hand side is a line that connects the points (0,−10) and (2,−6): that line
has equation x = 1

2 (y+10). (Find the equation in the familiar y = mx+b
format and solve for x.) Likewise, the left hand side is described by the
line x = − 1

2 (y+ 10). The total length is the distance between these two
lines: ℓ(y) = 1

2 (y+ 10)− (− 1
2 (y+ 10)) = y+ 10.

The total fluid force is then:

F =
∫ −6

−10
62.4(−y)(y+ 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. Sometimes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convention that the bottom of the triangular plate
is at (0, 0), as shown in Figure 6.5.6. The equations of the left and right
hand sides are easy to find. They are y = 2x and y = −2x, respectively,
which we rewrite as x = y/2 and x = −y/2. Thus the length function is
ℓ(y) = y/2− (−y/2) = y.

(2, 4)(−2, 4)

y

water line

d
(y)

=
10

−
y

−2 −1 1 2

2

6

8

10

x

y

Figure 6.5.6: Sketching the triangular
plate in Example 6.5.2 with the conven‐
tion that the base of the triangle is at
(0, 0).

As the surface of the water is 10 ft above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth function is the
distance between y = 10 and y; d(y) = 10 − y. We compute the total
fluid force as:

F =
∫ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

Notes:
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Chapter 6 Applications of Integration

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent.

Example 6.5.3 Finding fluid force
Find the total fluid force on a car door submerged up to the bottomof its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto).

SOLUTION The car door, as a rectangle, is drawn in Figure 6.5.7. Its
length is 10/3 ft and its height is 2.25 ft. We adopt the convention that the top
of the door is at the surface of the water, both of which are at y = 0. Using the
weight‐density of water of 62.4 lb/ft3, we have the total force as

(3.3, 0)

(3.3,−2.25)(0,−2.25)

(0, 0)

y

y

x

Figure 6.5.7: Sketching a submerged car
door in Example 6.5.3.

F =
∫ 0

−2.25
62.4(−y)10/3 dy

=

∫ 0

−2.25
−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a car
door while seated inside, making the door effectively impossible to open. This is
counter‐intuitive as most assume that the door would be relatively easy to open.
The truth is that it is not, hence the survival tips mentioned at the beginning of
this section.

y

y

x
−2 −1 1 2

−2

−1

1

2

50

water line

not to scale

d
(y)

=
50

−
y

Figure 6.5.8: Measuring the fluid force
on an underwater porthole in Exam‐
ple 6.5.4.

Example 6.5.4 Finding fluid force
An underwater observation tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each vertically oriented porthole is to
have a 3 ft diameter whose center is to be located 50 ft underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 ft of water.

SOLUTION We place the center of the porthole at the origin, meaning
the surface of thewater is at y = 50 and the depth functionwill be d(y) = 50−y;
see Figure 6.5.8

The equation of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving for
x we have x = ±

√
2.25− y2, where the positive square root corresponds to

the right side of the circle and the negative square root corresponds to the left

Notes:
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6.5 Fluid Forces

side of the circle. Thus the length function at depth y is ℓ(y) = 2
√
2.25− y2.

Integrating on [−1.5, 1.5] we have:

F = 62.4
∫ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
∫ 1.5

−1.5

(
100
√
2.25− y2 − 2y

√
2.25− y2

)
dy

= 6240
∫ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

∫ 1.5

−1.5

(
2y
√
2.25− y2

)
dy.

The second integral above can be evaluated using Substitution. Let u = 2.25−y2
with du = −2y dy. The new bounds are: u(−1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total fluid force
on a vertically oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole ismore straightforward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a vertically oriented circle whose center is at depth d is the same
as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol‐
umes of solids of revolution. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximating the solution, then refining the approximation, then recog‐
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is bene‐
ficial as it helps solve problems found in the exercises, and other mathematical
skills are strengthened by properly applying these formulas. However, more im‐
portantly, understand how each of these formulas was constructed. Each is the
result of a summation of approximations; each summation was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

Notes:
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Exercises 6.5
Terms and Concepts

1. State in your own words Pascal’s Principle.

2. State in your own words how pressure is different from
force.

Problems

In Exercises 3–12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4 lb/ft3.

3.

2 ft

2 ft

1 ft

4.

1 ft

2 ft

1 ft

5.

4 ft

5 ft

6 ft

6.
4 ft

5 ft

6 ft

7.

2 ft

5 ft

8. 4 ft

5 ft

9.

4 ft

2 ft

5 ft

10.

4 ft

2 ft

5 ft

11.

2 ft

2 ft

1 ft

12.

2 ft

2 ft

1 ft

In Exercises 13–18, the side of a container is pictured. Find the
fluid force exerted on this plate when the container is full of:

(a) water, with a weight density of 62.4 lb/ft3, and

(b) concrete, with a weight density of 150 lb/ft3.
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13.

3 ft

5 ft

14.

4 ft

y = x2

4 ft

15.

4 ft

y = 4 − x2

4 ft

16.

2 ft

y = −
√
1 − x2

17.

2 ft

y =
√
1 − x2

18.

6 ft

y = −
√
9 − x2

19. How deep must the center of a vertically oriented circular
plate with a radius of 1 ft be submerged in water, with a
weight density of 62.4 lb/ft3, for the fluid force on the plate
to reach 1,000 lb?

20. How deep must the center of a vertically oriented square
plate with a side length of 2 ft be submerged in water, with
a weight density of 62.4 lb/ft3, for the fluid force on the
plate to reach 1,000 lb?
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Appendix





SOLUTIONS TO SELECTED
PROBLEMS

Chapter 1

Exercises 1.0
1. (−∞,∞)

2. [−7,∞)

3. (−∞,−1] ∪ [7,∞)

4. (−∞,∞)

5. (−∞, 2) ∪ (2,∞)

6. (−∞,∞)

7. (−∞,∞)

8. (−∞,−2) ∪ (2,∞)

9. (−∞, 0) ∪ (0,∞)

10. (−∞,∞)

11.

−4 −2 2 4

−4

−2

2

4

x

y

12.

−4 −2 2 4

−4

−2

2

4

x

y

13.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

14.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

15. (a) 14
(b) 11
(c) 3a2 − 2a+ 6
(d) 3(x+ h)2 − 2(x+ h) + 6

(e) h(3h+ 6x− 2)
h

16. (a)
√
2

(b) undefined
(c)

√
t− 2

(d)
√
x+ h− 2

(e)
√
x+ h− 2−

√
x− 2

h
=

h
h(
√
x+ h− 2+

√
x− 2)

17. (a) −1

(b) 1
9

(c) 1
t+ 3

(d) 1
x+ h

(e)
1

x+h − 1
x

h
= − h

hx(x+ h)

18. (a) e−2

(b) e3

(c) et+1

(d) ex+h

(e) ex+h − ex

h
= ex e

h − 1
h

19. {2.12} ∪ [2.13, 2.14) ∪ (2.15,∞)

20. (−∞, 5.677] ∪ [5.678, 5.679) ∪ (5.679,∞)

21. (0.3, 0.8]

22. (0.1, 0.2]
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Exercises 1.1

1. Answers will vary.

3. F

5. 1

7. −1

9. Limit does not exist

11. 1.5

13. Limit does not exist.

15. 1

17.

h f(a+h)−f(a)
h

−0.1 −7
−0.01 −7
0.01 −7
0.1 −7

The limit seems to be exactly−7.

19.

h f(a+h)−f(a)
h

−0.1 4.9
−0.01 4.99
0.01 5.01
0.1 5.1

The limit is approx. 5.

21.

h f(a+h)−f(a)
h

−0.1 29.4
−0.01 29.04
0.01 28.96
0.1 28.6

The limit is approx. 29.

23.

h f(a+h)−f(a)
h

−0.1 −0.998334
−0.01 −0.999983
0.01 −0.999983
0.1 −0.998334

The limit is approx.−1.

25.

h f(a+h)−f(a)
h

−0.1 0.251582
−0.01 0.250156
0.01 0.249844
0.1 0.248457

The limit is approx. 0.25.

Exercises 1.2

1. ε should be given first, and the restriction |x− a| < δ
implies |f(x)− K| < ε, not the other way around.

3. T

5. δ ≤ 0.45

7. Given ε > 0, choose δ = ε
2 .

|x− 4| < δ =
ε

2
|2x− 8| < ε

|(2x+ 5)− (13)| < ε.

Thus lim
x→4

(2x+ 5) = 13.

9. Given ε > 0, let δ =
ε

4
. Then:

|x− 5| < δ =
ε

4
4 |x− 5| < ε

4
· 4

|4x− 20| < ε

|4x− 12− 8| < ε

Thus lim
x→5

(4x− 12) = 8.

11. Given ε > 0, let δ = ε
7 .

|x− 3| < δ =
ε

7
|x− 3| < ε

x+ 3
|x− 3| · |x+ 3| < ε

x+ 3
· |x+ 3|

Assuming x is near 3, x+ 3 is positive and we can drop the
absolute value signs on the right.

|x− 3| · |x+ 3| < ε

x+ 3
· (x+ 3)∣∣x2 − 9

∣∣ < ε∣∣(x2 − 3)− 6
∣∣ < ε.

Thus, lim
x→3

(
x2 − 3

)
= 6.

13. Given ε > 0, let δ = min{1, ε
9}. Then:

|x− 1| < δ

|x− 1| < ε

9
|x− 1| < ε

2x+ 5
|x− 1| · |2x+ 5| < ε

2x+ 5
· |2x+ 5| = ε∣∣2x2 + 3x− 5

∣∣ < ε∣∣(2x2 + 3x+ 1)− 6
∣∣ < ε.

Thus, lim
x→1

(
2x2 + 3x+ 1

)
= 6.

15. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a
constant function, the latter inequality is simply
|5− 5| < ε, which is always true. Thus we can choose any
δ we like; we arbitrarily choose δ = ε.
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17. Given ε > 0, let δ = min{ 1
2 ,

ε
2}. Then:

|x− 1| < δ

|x− 1| < ε

2
|x− 1| < ε · x
|x− 1| /x < ε

|(x− 1)/x| < ε

|1− 1/x| < ε

|(1/x)− 1| < ε,

which is what we wanted to prove.

Exercises 1.3

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is
approximately twice the size of g. (I.e., f(x) ≈ 2g(x).)

7. 9

9. 0

11. 3

13. 3

15. 1

17. 0

19. 7

21. 1/2

23. Limit does not exist

25. 2

27. π2+3π+5
5π2−2π−3 ≈ 0.6064

29. −8

31. 10

33. −3/2

35. 1/6

37. −1/9

39. −8

41. 0

43. 1

45. 0

47. 3

49. 1

51. 4/3

53.
(a) Apply Part 1 of Theorem 1.3.1.
(b) Apply Theorem 1.3.7; g(x) = x

x is the same as
g(x) = 1 everywhere except at x = 0. Thus
lim
x→0

g(x) = lim
x→0

1 = 1.

(c) The function f(x) is always 0, so g
(
f(x)

)
is never

defined as g(x) is not defined at x = 0. Therefore
the limit does not exist.

(d) The theorem requires that lim
x→0

g(x) be equal to
g(0). They are not equal, so the conditions of the
theorem are not satisfied, and hence the theorem is
not violated.

55.
(a) ±

√
− c

a

(b) 0 and− b
a

(c) − c
b and undefined

Exercises 1.4
1. The function approaches different values from the left

and right; the function grows without bound; the function
oscillates.

3. F
5. (a) 2

(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) 2
(b) 2
(c) 2
(d) 2

9. (a) 2
(b) 2
(c) 2
(d) 0
(e) 2
(f) 2
(g) 2
(h) Not defined

11. DNE
13. DNE
15. (a) 2

(b) −4
(c) Does not exist.
(d) 2
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17. (a) 0
(b) 0
(c) 0
(d) 0
(e) 2
(f) 2
(g) 2
(h) 2

19. (a) 1− cos2 a = sin2 a
(b) sin2 a
(c) sin2 a
(d) sin2 a

21. (a) 4
(b) 4
(c) 4
(d) 3

23. (a) −1
(b) 1
(c) Does not exist
(d) 0

25. Answers will vary.

27. Answers will vary.

29. −3/5

31. 1
2
√
3

33. −1.63

Exercises 1.5

1. F

3. F

5. F

7. Answers will vary.

9. (a) ∞
(b) ∞

11. (a) 1
(b) 0
(c) 1/2
(d) 1/2

13. (a) Limit does not exist
(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.
(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.
(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; vertical asymptotes at
x = −5, 4.

21. Horizontal asymptote at y = 0; vertical asymptotes at
x = −1, 0.

23. No horizontal or vertical asymptotes.

25. y = 2

27. ∞

29. −∞

31. −2/3

33. −
√
10/2
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35. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 1| < δ, |f(x)− 3| < ε.
Scratch‐Work: Consider |f(x)− 3| < ε, keeping in mind
we want to make a statement about |x− 1|:

|f(x)− 3| < ε

|5x− 2− 3| < ε

|5x− 5| < ε

5 |x− 1| < ε

|x− 1| < ε

5

suggesting δ = ε
5 .

Proof: Given ε > 0, let δ =
ε

5
. Then:

|x− 1| < δ

|x− 1| < ε

5
5 |x− 1| < ε

5
· 5

|5x− 5| < ε

|5x− 2− 3| < ε

Thus lim
x→1

(5x− 2) = 3.

37. 1

Exercises 1.6
1. Answers will vary.

3. A root of a function f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes
(c) No; f(2) is not defined.

19. (a) Yes
(b) Yes

21. (a) Yes
(b) Yes

23. (−∞,∞)

25. [−2, 2]

27. (−∞,−
√
6] ∪ [

√
6,∞)

29. (−∞,∞)

31. (0,∞)

33. (−∞, 0]

35. (−∞,−4) ∪ (−4, 2) ∪ (2, 5) ∪ (5,∞)

37. Yes. The only “questionable” place is at x = 3, but the left
and right limits agree.

39. Yes, by the Intermediate Value Theorem.

41. We cannot say; the Intermediate Value Theorem only
applies to function values between−10 and 10; as 11 is
outside this range, we do not know.

43. a = 1
3

45. a = 3
4 and b = − 1

4

47. Answers will vary.

49. Answers will vary.

51. Use the Bisection Method with an appropriate interval.

53. Use the Bisection Method with an appropriate interval.

55. (a) 20
(b) 25
(c) Limit does not exist
(d) 25

57. Answers will vary.

Chapter 2

Exercises 2.0
1. 80x12y17

2. a
16b7

3. x3

16y22z35

4. x2y4z5 4
√
z = x2y4z21/4

5. 3x(x2 + 9x+ 3)

6. 5(x−1)

3x
1
3

7. −5x+4

2x
1
2 (x+4)2

8. 6x(3x2 + 2)3(x2 − 5)2(7x2 − 18)

9. (a) 8
(b) 44
(c) x2 − 6x+ 8
(d) x2 + 2x− 4

10. (a) − 1
3

(b) undefined

(c) 1√
x− 2− 5

(d)
√

1
x− 5

− 2
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11. (a) Possible solution: f(x) = 5
x and g(x) = x+ 4

(b) Possible solution: f(x) = |x| and g(x) = 4− x2

(c) Possible solution: f(x) =
√
x− 5 and g(x) = (x +

2)2

12. (a) Possible solution: f(x) = 3
√
x, g(x) = x2, and h(x) =

2x+ 1
(b) Possible solution: f(x) = 2x + 1, g(x) = 3

√
x, and

h(x) = x2

Exercises 2.1

1. T

3. Answers will vary.

5. (a) f ′(x) = 0, (b) y = 6

7. (a) f ′(x) = −3, (b) y = 4− 3x

9. (a) h′(x) = 2− 2x (b) y = 1

11. (a) g′(x) = 1
2
√

x+3 , (b) y =
x
4 +

7
4

13. (a) h′(x) = − 3
2x
√
x
, (b) y = − 3x

16
+

9
4

15. f(x) =
√
x, c = 16.

17. f(x) = 1
x
, c = 2

19. y = 8.1(x− 3) + 16

21. y = −0.099(x− 9) + 1

23. y = .49(x− 2) + ln 2

25. (a) Approximations will vary; they should match (c)
closely.

(b) f ′(x) = 2x
(c) At (−1, 0), slope is −2. At (0,−1), slope is 0. At

(2, 3), slope is 4.

27.

−2 −1 1 2 3 4
−1

1

2

3

x

y

29.

−2 −1 1 2

−5

5

x

y

31.

−2 −1 1 2−3 3
−2

2

−4

4

−6

6

x

y

33. (a) Approximately on (−2, 0) and (2,∞).
(b) Approximately on (−∞,−2) and (0, 2).
(c) Approximately at x = 0, ±2.
(d) Approximately on (−∞,−1) and (1,∞).
(e) Approximately on (−1, 1).
(f) Approximately at x = ±1.

35.
37. Approximately 0.54.
39. (a) 1

(b) 3
(c) Does not exist
(d) (−∞,−3) ∪ (3,∞)

Exercises 2.2
1. Velocity
3. Linear functions.
5. −17
7. f(10.1) is likely most accurate, as accuracy is lost the

farther from x = 10 we go.
9. 6

11. ft/s2

13. (a) thousands of dollars per car
(b) It is likely that P(0) < 0. That is, negative profit for

not producing any cars.

15. f(x) = g′(x)

17. g(x) = f ′(x)

19. f(6) = 1, f ′(6) = − 3
4

21. Answers vary. Possible solution

1 2 3

−1

1

2

3

x

y

23. f ′(x) = 10x
25. f ′(π) ≈ 0.
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Exercises 2.3
1. Power Rule.

3. One answer is f(x) = 10ex.

5. f(x), g(x), h(x), andm(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity function, and f ′′(x) is acceleration.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 3
2
√
x− 1

2x
√
x

29.

31. a is f, b is f ′, c is f ′′

33. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

35. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

37. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

39. (a) v(t) = 4t3 − 8t, a(t) = 12t2 − 8
(b) a(1.5) = 19 ft/s2

(c) t = 0 sec and t =
√
2 sec

41. Tangent line: y = 2(x− 1)

43. Tangent line: y = x− 1

45. Tangent line: y =
√
2(x− π

4 )−
√
2

47. n = −3, 2

49. The tangent line to f(x) = x4 at x = 3 is
y = 108(x− 3) + 81; thus
(3.01)4 ≈ y(3.01) = 108(.01) + 81 = 82.08.

Exercises 2.4
1. F

3. T

5. F

7. d
dx

(cot x) = d
dx

( cos x
sin x

)
=

sin x(− sin x)− (cos x)(cos x)
(sin x)2

=
−[(sin x)2 + (cos x)2]

(sin x)2

=
−1

(sin x)2
= − csc2 x

9. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)
(b) f ′(x) = 3x2 + 6x
(c) They are equal.

11. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)
(b) h′(s) = 4s+ 7
(c) They are equal.

13. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

15. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

17. f ′(x) = sin x+ x cos x

19. H′(y) = (y5 − 2y3)(14y+ 1) + (5y4 − 6y2)(7y2 + y− 8)

21. g′(x) = −12
(x−5)2

23. g′(x) =
√
x+ 8

2(
√
x+ 4)2

25. h′(x) = − csc2 x− ex

27. f ′(x) = (x+2)(4x3+6x2)−(x4+2x3)(1)
(x+2)2

29. y′ = −2x− 5− 10
x2

= −2x3 + 5x2 + 10
x2

31. p′(x) = − 1
x2

− 2
x3

− 3
x4

= − x2 + 2x+ 3
x4

33. f ′(t) = 5t4(sec t+ et) + t5(sec t tan t+ et)

35. g′(x) = 0

37. f ′(y) = y(2y3 − 5y− 1)(12y) + y(6y2 − 5)(6y2 + 7) +
1(2y3 − 5y− 1)(6y2 + 7) = 72y5 − 64y3 − 18y2 − 70y− 7

39. h′(x) = (t2 cos t+2)(2t sin t+t2 cos t)−(t2 sin t+3)(2t cos t−t2 sin t)
(t2 cos t+2)2

41. g′(x) = 2 sin x sec x+ 2x cos x sec x+ 2x sin x sec x tan x =
2 tan x+ 2x+ 2x tan2 x = 2 tan x+ 2x sec2 x

43. y = 2x+ 2

45. y = 4

47. x = 3/2

49. f ′(x) is never 0.

51. f ′′(x) = 2 cos x− x sin x

53. f ′′(x) = cot2 x csc x+ csc3 x

55. 1

57. −4

59. − 1
25

61. (a)− 7
2 (b)

1
18 (c)−

9
2 (d)

15
2
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Exercises 2.5

1. T

3. F

5. T

7. f ′(x) = 10(4x3−x)9 ·(12x2−1) = (120x2−10)(4x3−x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)

11. f ′(x) = 4
(
x+ 1

x

)3(1− 1
x2
)

13. f ′(x) = −3 sin(3x)

15. h′(x) = (2θ + 4) sec2(θ2 + 4θ)

17. h′(t) = 8 sin3(2t) cos(2t)

19. g′(x) = 2(tan x sec2 x− x sec2(x2))

21. f ′(x) = − tan x

23. f ′(x) = 2/x

25. r′(x) = −6(x− 1)
x3
√
4x− 3

27. h′(x) = 200(2x+ 1)9[(2x+ 1)10 + 1]9

29. F ′(x) = 2(2x+ 1)(2x+ 3)2(24x2 + 26x+ 3)

31. f ′(x) = 5(x2 + x)4(2x+ 1)(3x4 + 2x)3 + (x2 + x)53(3x4 +
2x)2(12x3 + 2)

33. g′(t) = 10t cos( 1t )e
5t2 + 1

t2 sin(
1
t )e

5t2

35. f ′(x) = tan(5x)8(4x+ 1)− (4x+ 1)25 sec2(5x)
tan2(5x)

37. y′ = − cos x sin x cos(cos2 x)√
sin(cos2 x)

39. f ′(x) = 1
2 x

−1/2 − 1
2 x

−3/2 = 1
2
√

x −
1

2
√

x3

41. f ′(t) = −t√
1−t2

43. h′(x) = 1.5x0.5 = 1.5
√
x

45. g′(x) =
√

x(1)−(x+7)(1/2x−1/2)
x = 1

2
√

x −
7

2
√

x3

47. 15

49. (a) 6 (b) 1 (c)−3 (d) 1.5

51. y = 0

53. y = −3(θ − π/2) + 1

55. In both cases the derivative is the same: 1/x.

57. Let g(x) = −x. Then
(a) f ◦ g = f, so f ′(−x) = f ′ ◦ g(x) =

−f ′ ◦ g(x)g′(x) = −(f ◦ g)′(x) = −f ′(x)

(b) f ◦ g = −f, so f ′(−x) = f ′ ◦ g(x) =
−f ′ ◦ g(x)g′(x) = −(f ◦ g)′(x) = f ′(x)

59. [f(g(x))]′′ = [f ′(g(x))g′(x)]′ = [f ′(g(x))]′g′(x) +
f ′(g(x))g′′(x) = f ′′(g(x))g′(x)g′(x) + f ′(g(x))g′′(x) =
f ′′(g(x))[g′(x)]2 + f ′(g(x))g′′(x)

61. 2xex cot x+ x2ex cot x− x2ex csc2 x

Exercises 2.6
1. Answers will vary.

3. T

5. dy
dx = −4x3

2y+1

7. dy
dx = sin x sec y

9. dy
dx = y

x

11. − 2 sin(y) cos(y)
x

13. 1
2y+2

15. − cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y)

17. − 2x+y
2y+x

19. 3x2y cos(x3)− sin(y3)
3xy2 cos(y3)− sin(x3)

21. dy
dx = y(y−2x)

x(x−2y)

23. (a) y = 0
(b) y = −1.859(x− 0.1) + 0.281

25. (a) y = 4
(b) y = 0.93(x− 2)− 4√108

27. (a) y = − 1√
3 (x−

7
2 ) +

6+3
√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

29. d2y
dx2 =

(2y+1)(−12x2)+4x3
(
2−4x3
2y+1

)
(2y+1)2

31. d2y
dx2 = cos x cos y+sin2 x tan y

cos2 y

33. In each, dy
dx = − y

x .

Chapter 3

Exercises 3.1
1. Answers will vary.

3. Answers will vary.

5. F

7. A: none; B: abs. max and rel. max; C: rel. min; D: none; E:
none; F: rel. min; G: none

9. f ′(0) = 0

11. f ′(π/2) = 0; f ′(3π/2) = 0

13. f ′(0) = 0

15. f ′(2) is not defined; f ′(6) = 0

17. min: (−0.5, 3.75)
max: (2, 10)

19. min: (π/4, 3
√
2/2)

max: (π/2, 3)

21. min: (
√
3, 2

√
3)

max: (5, 28/5)
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23. min: (π,−eπ)
max: (π/4,

√
2eπ/4
2 )

25. min: (1, 0)
max: (e, 1/e)

27. Answers will vary.
29. (a) x3−x, x3, and x3+x have 2, 1, and 0 critical numbers

respectively. Because the derivative is a quadratic
with at most 2 roots, a cubic cannot have 3 or more
critical numbers.

(b) A cubic can only have 2 or 0 extreme values.

31. dy
dx = y(y−2x)

x(x−2y)

33. 3x2 + 1

Exercises 3.2
1. Answers will vary.
3. Any c in (−1, 1) is valid.
5. c = −1/2
7. Rolle’s Thm. does not apply.
9. Rolle’s Thm. does not apply.

11. c = 0
13. c = 3/

√
2

15. The Mean Value Theorem does not apply.
17. c = −2/3
19. With c given by the Mean Value Theorem,

f(4) = f(1) + f ′(c)(4− 1) = 10+ 3f ′(c) ≥ 16.
21. f(−1) < 0 < f(0), so it has at least one root.

f ′ = 2+ 3x2 + 20x4 ≥ 2, so more than one root would
contradict Rolle’s Theorem.

23. (a) is Rolle’s Theorem. For (b), applying Rolle’s Theorem to
roots 1 and 2 and roots 2 and 3 shows that f ′ has two
roots, and we can then apply (a).

25. − p
c2 = f ′(c) = f(b)−f(a)

b−a = p/b+q−p/a−q
b−a = p(a−b)

ab(b−a) =

− p
ab implies that c =

√
ab.

27. They are the odd, integer valued multiples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

Exercises 3.3
1. Answers will vary.
3. Answers will vary.
5. F
7. decreasing on [−3,−1]; [1, 3],

increasing on (−∞,−3]; [−1, 1]; [3,∞);
local maxima when x = −3, 1,
local minima when x = −1, 3.

9. decreasing on (−∞,−2]; [2,∞),
increasing on [−2, 2];
local maxima when x = 2,
local minima when x = −2.

11. Graph and verify.
13. Graph and verify.
15. Graph and verify.
17. Graph and verify.
19. domain: (−∞,∞);

c.p. at c = −1;
decreasing on (−∞,−1];
increasing on [−1,∞);
rel. min at x = −1.

21. domain=(−∞,∞);
c.p. at c = 1

6 (−1±
√
7);

decreasing on [ 16 (−1−
√
7), 1

6 (−1+
√
7)];

increasing on (−∞, 1
6 (−1−

√
7)]; [ 16 (−1+

√
7),∞);

rel. min at x = 1
6 (−1+

√
7);

rel. max at x = 1
6 (−1−

√
7).

23. domain=(−∞,∞);
c.p. at c = 1;
decreasing on [1,∞)
increasing on (−∞, 1];
rel. max at x = 1.

25. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞);
no c.p.;
decreasing on entire domain, (−∞,−2); (−2, 4); (4,∞).

27. domain=(−π, π);
c.p. at c = −3π/4,−π/4, π/4, 3π/4;
decreasing on [−3π/4,−π/4]; [π/4, 3π/4];
increasing on (−π,−3π/4]; [−π/4, π/4]; [3π/4, π);
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

29. domain=[0, 3π];
c.p. at c = π

3 ,
5π
3 ,

7π
3 ;

decreasing on [0, π
3 ]; [

5π
3 ,

7π
3 ];

increasing on [ π3 ,
5π
3 ]; [

7π
3 , 3π];

rel. min at x = π
3 ,

7π
3 ;

rel. max at x = 5π
3

31. domain=[3,∞);
no c.p.;
increasing on [3,∞)

33. domain=(−∞,∞);
c.p. at c = −1, 0;
decreasing on (−∞,−1]
increasing on [−1,∞); rel. min at x = −1

35. domain=[0,∞);
c.p. at c = 1/4;
decreasing on [1/4,∞);
increasing on [0, 1/4]; rel. max at x = 1/4

37. domain=[0, 2π];
c.p. at c = 0, π/2, π, 3π/2, 2π;
decreasing on [π/2, 3π/2];
increasing on [0, π/2]; [3π/2, 2π];
rel. max at x = π/2;
rel. min at x = 3π/2

39. Hint/sketch: Suppose that f ′(c) > 0 and f ′(d) < 0. By
considering the difference quotient at x = c, explain why
the absolute maximum of f on [c, d] cannot occur at x = c.
Do the same at x = d. So, by the Extreme Value Theorem
(Theorem 3.1.1), fmust have a maximum at some x = r in
(c, d), etc.
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41. c = ± cos−1(2/π)

Exercises 3.4

1. Answers will vary.

3. Yes; Answers will vary.

5. concave up on (−2, 2);
concave down on (−∞,−2); (2,∞);
inflection points when x = ±2

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Graph and verify.

17. (a) Possible points of inflection: none
(b) concave up on (−∞,∞)

(c) min: x = 1
(d) f ′ has no maximal or minimal value.

19. (a) Possible points of inflection: x = 0
(b) concave down on (−∞, 0); concave up on (0,∞)

(c) max: x = −1/
√
3, min: x = 1/

√
3

(d) f ′ has a minimal value at x = 0

21. (a) Possible points of inflection: x = −2/3, 0
(b) concave down on (−2/3, 0);

concave up on (−∞,−2/3), (0,∞)

(c) min: x = 1
(d) f ′ has a relative min at: x = 0,

relative max at: x = −2/3

23. (a) Possible points of inflection: x = 1
(b) concave up on (−∞,∞)

(c) min: x = 1
(d) f ′ has no relative extrema

25. (a) Possible points of inflection: x = ±1/
√
3

(b) concave down on (−1/
√
3, 1/

√
3);

concave up on (−∞,−1/
√
3), (1/

√
3,∞)

(c) max: x = 0
(d) f ′ has a relative max at x = −1/

√
3,

relative min at x = 1/
√
3

27. (a) Possible points of inflection: x = −π/4, 3π/4
(b) concave down on (−π/4, 3π/4);

concave up on (−π,−π/4), (3π/4, π)
(c) max: x = π/4, min: x = −3π/4
(d) f ′ has a relative min at x = 3π/4,

relative max at x = −π/4

29. (a) Possible points of inflection: x = 1/e3/2

(b) concave down on (0, 1/e3/2);
concave up on (1/e3/2,∞)

(c) min: x = 1/
√
e

(d) f ′ has a relative min at x = 1/
√
e3 = e−3/2

31. (a) Possible points of inflection: none
(b) concave up on (−3,∞)

(c) min: x = −2
(d) f ′ has no relative extrema

33. (a) Possible points of inflection: x = 1
(b) concave down on (−∞, 1); concave up on (1,∞)

(c) max: x = −1, min: x = 3
(d) f ′ has a relative min at x = 1

35. (a) Possible points of inflection: x = 1/2
(b) concave down on (1/2,∞),

concave up on (−∞, 1/2)
(c) max: x = 1, min: x = 0
(d) f ′ has a relative max at x = 1/2

Exercises 3.5
1. Answers will vary.
3. T
5. concave up on (−∞,−1); (1,∞)

concave down on (−1, 1)
inflection points when x = ±1
increasing on (−2, 0); (2,∞)
decreasing on (−∞,−2); (0, 2)
relative maximum when x = 0
relative minima when x = ±2

7. A good sketch will include the x and y intercepts and draw
the appropriate line.

9. Use technology to verify sketch.
11. Use technology to verify sketch.
13. Use technology to verify sketch.
15. Use technology to verify sketch.
17. Use technology to verify sketch.
19. Use technology to verify sketch.
21. Use technology to verify sketch.
23. Use technology to verify sketch.
25. Use technology to verify sketch.
27. Use technology to verify sketch.
29. Use technology to verify sketch.
31. Use technology to verify sketch.
33. Use technology to verify sketch.
35. Use technology to verify sketch.
37. Use technology to verify sketch.
39. Use technology to verify sketch.
41. Use technology to verify sketch.
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43. Use technology to verify sketch.

45. Use technology to verify sketch.

47. various possibilities

49. various possibilities

51. various possibilities

53. Critical point: x = 0; Points of inflection: ±b/
√
3

55. Critical points: x = nπ/2−b
a , where n is an odd integer;

Points of inflection: (nπ − b)/a, where n is an integer.

57. dy
dx

= −x/y, so the function is increasing in second and
fourth quadrants, decreasing in the first and third
quadrants.
d2y
dx2

= −1/y3, which is positive when y < 0 and is
negative when y > 0. Hence the function is concave
down in the first and second quadrants and concave up in
the third and fourth quadrants.

Chapter 4

Exercises 4.1
1. T

3. 3 ft/min

5. (a) 5/(2π) ≈ 0.796cm/s
(b) 1/(40π) ≈ 0.00796 cm/s
(c) 1/(4000π) ≈ 0.0000796 cm/s

7. (a) 64.44 mph
(b) 78.89 mph

9. Due to the height of the plane, the gun does not have to
rotate very fast.
(a) 0.073 rad/s
(b) 3.66 rad/s (about 1/2 revolution/sec)
(c) In the limit, rate goes to 7.33 rad/s (more than 1

revolution/sec)

11. (a) 30.59 ft/min
(b) 36.1 ft/min
(c) 301 ft/min
(d) The boat no longer floats as usual, but is being pulled

up by the winch (assuming it has the power to do so).

13. (a) 0.63 ft/sec
(b) 1.6 ft/sec

About 52 ft.
15. (a) The balloon is 105ft in the air.

(b) The balloon is rising at a rate of 17.45ft/min. (Hint:
convert all angles to radians.)

Exercises 4.2
1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equation has
only 1 critical value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should
be 2r = 7.67cm. No, this is not the size of the standard
can.

11. The height and width should be 18 and the length should
be 36, giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground,

giving a minimum cost of $374,899.96.
15. The dog should run about 19 feet along the shore before

starting to swim.
17. The largest area is 2 formed by a square with sides of

length
√
2.

19. A length of 2 in and height of 2.5 will give a cost of 60 ¢.

Exercises 4.3
1. T

3. F

5. Answers will vary.

7. Use y = x2; dy = 2x · dx with x = 2 and dx = 0.05. Thus
dy = .2; knowing 22 = 4, we have 2.052 ≈ 4.2.

9. Use y = x3; dy = 3x2 · dx with x = 5 and dx = 0.1. Thus
dy = 7.5; knowing 53 = 125, we have 5.13 ≈ 132.5.

11. Use y =
√
x; dy = 1/(2

√
x) · dx with x = 16 and

dx = 0.5. Thus dy = .0625; knowing
√
16 = 4, we have√

16.5 ≈ 4.0625.
13. Use y = 3

√
x; dy = 1/(3 3√x2) · dx with x = 64 and

dx = −1. Thus dy = −1/48 ≈ 0.0208; we could use
−1/48 ≈ −1/50 = −0.02; knowing 3√64 = 4, we have
3√63 ≈ 3.98.

15. Use y = sin x; dy = cos x · dx with x = π and dx ≈ −0.14.
Thus dy = 0.14; knowing sin π = 0, we have sin 3 ≈ 0.14.

17. dy = (2x+ 3) dx

19. dy = −2
4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x) dx

27. dy = 1
(x+2)2 dx

29. dy = (ln x) dx

31. 1− 6x

33. 1− x
2

35. 22/3 + x
24/3

37. dV = ±0.157

39. ±15π/8 ≈ ±5.89in2
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41. (a) 297.8 feet
(b) ±62.3 ft
(c) ±20.9%

43. (a) 298.9 feet
(b) ±8.67 ft
(c) ±2.9%

45.

Exercises 4.4
1. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963,
x3 = 1.5707963, x4 = 1.5707963, x5 = 1.5707963

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647,
x4 = 1.0000458, x5 = 1

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

9. roots are: x = −5.156, x = −0.369 and x = 0.525

11. roots are: x = −1.013, x = 0.988, and x = 1.393

13. x = ±0.824,

15. x = ±0.743

17. The approximations alternate between x = 1 and x = 2.

19. f(x) = x2 − 16.5 and x0 = 4 yield x1 = 65
16 = 4.0625 and

x2 = 8449
2080 ≈ 4.0620192.

21. f(x) = x3 − 63 and x0 = 4 yield x1 = 191
48 ≈ 3.97916667

and x2 ≈ 3.9790572.
23. (a) xn → −∞

(b) x1 is undefined
(c) xn → 2
(d) x1 is undefined
(e) xn → 6

Chapter 5

Exercises 5.1
1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3x4/4+ C

11. 10x3/3− 2x+ C

13. −1/(3t) + C

15. 2
√
x+ C

17. − cos θ + C

19. 5eθ + C

21. 4/3t3 + 6t2 + 9t+ C

23. x6/6+ C

25. −x−3 + C

27. 2
9
x9/2 + C

29. 5x− 2
9 x

3 + 3
16 x

4 + C

31. 2
3u

3 + 9
2u

2 + 4u+ C

33. 2
√
x+ x+ 2

3 x
√
x+ C

35. θ + tan θ + C

37. − cot t− t+ C

39. 8
√
u+ 4u

√
u+ C

41. 6t1/3 + 3
4 t

4/3 + C

43. − cos x+ 3

45. x4 − x3 + 7

47. 7x3
6 − 9x

2 + 40
3

49. θ − sin(θ)− π + 4

51. x−2 + 1

53.
(a) x > 0
(b) 1/x
(c) x < 0
(d) 1/x
(e) ln |x|+ C. Explanations will vary.

55. s(t) = 241.67− 16t2 ft, so s(t) = 0 at t = 3.89sec.

57.

2 4

−2

2

4

x

y

Other antiderivatives are vertical shifts of this one.

59. dy = (2xex cos x+ x2ex cos x− x2ex sin x) dx
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Exercises 5.2
1. Answers will vary.
3. 0
5. (a) 3

(b) 4
(c) 3
(d) 0
(e) −4
(f) 9

7. (a) 4
(b) 2
(c) 4
(d) 2
(e) 1
(f) 2

9. (a) π

(b) π

(c) 2π
(d) 10π

11. (a) −59
(b) −48
(c) −27
(d) −33
(e) 70
(f) 91

13. (a) 4
(b) 4
(c) −4
(d) −2
(e) 6
(f) 2

15. (a) 2ft/s
(b) 2ft
(c) 1.5ft

17. (a) 64ft/s
(b) 64ft
(c) t = 2
(d) t = 2+

√
7 ≈ 4.65 seconds

19. 2
21. 16
23. 22
25. 0
27. This is a triangle with base b and heightmb.

29. 1/4x4 − 2/3x3 + 7/2x2 − 9x+ C

31. 3/4t4/3 − 1/t+ 2t/ ln 2+ C

Exercises 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. 1+ 1/2+ 1/3+ 1/4+ 1/5 = 137/60

11. 1/2+ 1/6+ 1/12+ 1/20 = 4/5

13. Answers may vary;
∑5

i=1 3i

15. Answers may vary;
∑4

i=1
i

i+1

17. 50

19. 1045

21. −8525

23. 5050

25. 155

27. 24

29.
∫ π

0

sin x
1+ x

dx

31.
∫ 7

2
5x3 − 4x+ 7 dx

33. lim
n→∞

[
3
n

n∑
i=1

4− 2
(
2+ 3i

n

)]

35. lim
n→∞

π

n

n∑
i=1

sin3(−π/2+ πi/n)
2+ cos(−π/2+ πi/n)

37. 19

39. π/3+ π/(2
√
3) ≈ 1.954

41. 0.388584

43. (a) Exact expressions will vary; (1+n)2

4n2 .
(b) 121/400, 10201/40000, 1002001/4000000
(c) 1/4

45. (a) 8.
(b) 8, 8, 8
(c) 8

47. (a) Exact expressions will vary; 100− 200/n.
(b) 80, 98, 499/5
(c) 100

49. (a) Exact expressions will vary; 80.5.
(b) 72.25
(c) 62.5
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51. ∫ b

a
k · f(x) dx = lim

n→∞

n∑
i=1

k · f(ci)∆x T5.3.2.2

= lim
n→∞

k ·
n∑

i=1

k · f(ci)∆x T5.3.1.3

= k · lim
n→∞

n∑
i=1

k · f(ci)∆x T1.3.1.4

= k
∫ b

a
f(x) dx T5.3.2.2

53. F(x) = 5 tan x+ 4
55. G(t) = 4/6t6 − 5/4t4 + 8t+ 9
57. G(t) = sin t− cos t− 78

Exercises 5.4
1. Answers will vary.
3. T
5. 20
7. 0
9. 1

11. 23/2
13. e3 − e

15. 4
17. ln 2
19. 1/4
21. 15
23. 2
25. 63

2

27. 6π
7

29.
√
2

31. 36
33. 69

4

35. Explanations will vary. A sketch will help.
37. c = 2/

√
3

39. c = ln(e− 1) ≈ 0.54
41. 2/π
43. 2
45. 16
47. (a)−300ft; (b) 312.5ft
49. (a)−1ft; (b) 3ft
51. −64ft/s
53. 2ft/s
55. F′(x) = (3x2 + 1) 1

x3+x

57. F′(x) = 2x(x2 + 2)− (x+ 2)
59. F′(x) = ln x+4

x2+7

61. F′(x) = − 15x2
√

cos(5x3)+5
25x6+e5x3

63.
(a) x 0 1 2 3 4 5 6

g(x) 0 .5 0 ‐.5 0 1.5 4

(b) g(7) ≈ 5.7
(c) min at x = 3; max at x = 7
(d) Approximately

2 4 6

2

4

6

x

y

65. (a) bn = 4/nπ for odd n and bn = 0 for even n

(b) answers will vary

Exercises 5.5
1. Chain Rule.
3. 1

8 (x
3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C
13. − 1

2x2 − 1
x + C

15. sin3(x)
3 + C

17. − 1
6 sin(3− 6x) + C

19. 1
2 ln |sec(2x) + tan(2x)|+ C

21. tan(x)− x+ C
23. The key is to multiply csc x by 1 in the form

(csc x+ cot x)/(csc x+ cot x).

25. ex
3

3 + C
27. x− e−x + C
29. e−3x

3 − e−x + C

31.
(
ln x
)3

3 + C
33. 1

2 ln
∣∣ln (x2)∣∣+ C

35. x3
3 + x2

2 + x+ ln |x|+ C
37. 1

45 (5x
3 + 5x2 + 2)9 + C

39. − 1
3 cot

(
x3 + 1

)
+ C

41. − 1
5 cos(5x+ 1) + C

43. 7
3 ln |3x+ 2|+ C

45. 3 ln
∣∣3x2 + 9x+ 7

∣∣+ C

47.
√
x2 − 6x+ 8+ C
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49. 1
2 sec

2 θ + C or 1
2 tan

2 θ + C

51. − 1
2(x2+1) +

1
4(x2+1)2 + C

53. 1
11 (x

3 + 2)11 − 2
5 (x

3 + 2)10 + 4
9 (x

3 + 2)9 + C

55. 2
3 sin

6( x
4 ) + C

57. − ln 2

59. 2/3

61. (1− e)/2

63. 0

65. 2
3

Chapter 6

Exercises 6.1
1. T

3. Answers will vary.

5. 4π + π2 ≈ 22.436

7. π

9. 1/2

11. 4.5

13. 2− π/2

15. 1/6

17. 9
8

19. 64
3

21. 27/2

23. 9/2

25. All enclosed regions have the same area, with regions
being the reflection of adjacent regions. One region is
formed on [π/4, 5π/4], with area 2

√
2.

27. 1

29. 9/2

31. 1/12(9− 2
√
2) ≈ 0.514

33. 1

35. 4

Exercises 6.2
1. T

3. Recall that “dx” does not just “sit there;” it is multiplied by
A(x) and represents the thickness of a small slice of the
solid. Therefore dx has units of in, giving A(x) dx the units
of in3.

5. 48π
√
3/5 units3

7. π/6 units3

9. 9π/2 units3

11. 2π/15 units3

13. (a) π/2
(b) 5π/6
(c) 4π/5
(d) 8π/15

15. (a) 4π/3
(b) 2π/3
(c) 4π/3
(d) π/3

17. (a) 8π
(b) 8π
(c) 16π/3
(d) 8π/3

19. Placing the tip of the cone at the origin such that the
x‐axis runs through the center of the circular base, we
have A(x) = πx2/4. Thus the volume is 250π/3 units3.

21. Orient the cone such that the tip is at the origin and the
x‐axis is perpendicular to the base. The cross‐sections of
this cone are right, isosceles triangles with side length
2x/5; thus the cross‐sectional areas are A(x) = 2x2/25,
giving a volume of 80/3 units3.

Exercises 6.3
1. T
3. F
5. 9π/2 units3

7. 96π
5

9. 48π
√
3/5 units3

11. 768π
7

13. (a) 4π/5
(b) 8π/15
(c) π/2
(d) 5π/6

15. (a) 4π/3
(b) π/3
(c) 4π/3
(d) 2π/3

17. (a) 16π/3
(b) 8π/3
(c) 8π
(d) 8π

19. (a) Disk: π
∫ 1
0

[
12 − ( 4

√y)2
]
dy = π

3
Shell: 2π

∫ 1
0 x · x4 dx = π

3
(b) Disk: π

∫ 1
0 (x

4)2 dx = π
9

Shell: 2π
∫ 1
0 y(1− 4

√y) dy = π
9 .

A.17



21. (a) Disk: π
∫ 1
−2

[
(−4x+ 8)2 − (4x2)2

]
dx = 1152π

5

Shell: 2π
∫ 4
0 y√y dy+ 2π

∫ 16
4 y

[(
2− y

4

)
+

√y
2

]
dy =

128π
5 + 1024π

5

(b) Disk: π
∫ 4
0

[
1+

√y
2

]2
−

[
1−

√y
2

]2
dy+

π
∫ 16
4

[
1+

√y
2

]2
−

[
1−

(
2− y

4

)]2 dy = 32π
3 + 130π

3

Shell: 2π
∫ 1
−2(1− x)

[
(−4x+ 8)− 4x2

]
dx = 54π

(c) Disk:
π
∫ 1
−2

[
(16− 4x2)2 − (16− (−4x+ 8))2

]
dx = 1728π

5

Shell: 2π
∫ 4
0 (16− y)

[√y
]
dy+ 2π

∫ 16
4 (16−

y)
[(
2− y

4

)
+

√y
2

]
dy = 2176π

15 + 3008π
15 .

Exercises 6.4
1. In SI units, it is one joule, i.e., one newton‐meter, or

kg·m/s2·m. In Imperial Units, it is ft‐lb.
3. Smaller.
5. (a) 500 ft‐lb

(b) 100− 50
√
2 ≈ 29.29 ft

7. (a) 1
2 · d · l

2 ft‐lb
(b) 75 %
(c) ℓ(1−

√
2/2) ≈ 0.2929ℓ

9. (a) 756 ft‐lb
(b) 60,000 ft‐lb
(c) Yes, for the cable accounts for about 1% of the total

work.

11. 575 ft‐lb
13. 0.05 J

15. 5/3 ft‐lb
17. f · d/2 J
19. 5 ft‐lb
21. (a) 52,929.6 ft‐lb

(b) 18,525.3 ft‐lb
(c) When 3.83 ft of water have been pumped from the

tank, leaving about 2.17 ft in the tank.

23. 212,135 ft‐lb
25. 187,214 ft‐lb
27. 4,917,150 J

Exercises 6.5
1. Answers will vary.
3. 499.2 lb
5. 6739.2 lb
7. 3920.7 lb
9. 2496 lb

11. 602.59 lb
13. (a) 2340 lb

(b) 5625 lb

15. (a) 1597.44 lb
(b) 3840 lb

17. (a) 56.42 lb
(b) 135.62 lb

19. 5.1 ft

A.18



INDEX

absolute maximum, 143
absolute minimum, 143
acceleration, 96
antiderivative, 219
asymptote

horizontal, 52
vertical, 49

average value of function, 272

Bisection Method, 67

Chain Rule, 123
notation, 129

concave down, 169
concave up, 169
concavity, 169

inflection point, 170
test for, 170

Constant Multiple Rule
of derivatives, 103
of integration, 223

continuity
left, 62
right, 62

continuous function, 60
properties, 65

critical number, 146
critical point, 146
critical value, 146
curve sketching, 177

decreasing function, 158
finding intervals, 159
strictly, 158

definite integral, 231
and substitution, 286

derivative
acceleration, 97
as a function, 86
at a point, 82
basic rules, 101
Chain Rule, 123, 129
Constant Multiple Rule, 103
Constant Rule, 101
differential, 204
First Deriv. Test, 162
Generalized Power Rule, 124
higher order, 106
interpretation, 107

implicit, 133
interpretation, 94
Mean Value Theorem, 153
motion, 97
notation, 86, 106

Power Rule, 101
Product Rule, 110
Quotient Rule, 114
Second Deriv. Test, 174
Sum/Difference Rule, 103
tangent line, 82
trigonometric functions, 116
velocity, 97

differentiable, 82
differential, 204

notation, 204
discontinuous, 60
Disk Method, 302
displacement, 267

extrema
absolute, 143
and First Deriv. Test, 162
and Second Deriv. Test, 174
finding, 147
relative, 145

Extreme Value Theorem, 144
extreme values, 143

First Derivative Test, 162
floor function, 61
fluid pressure/force, 332, 334
Fundamental Theorem of Calculus, 261, 265

and Chain Rule, 267

Generalized Power Rule, 124

Hooke’s Law, 325

implicit differentiation, 133
increasing function, 158

finding intervals, 159
strictly, 158

indefinite integral, 220
indeterminate form, 8, 51
inflection point, 170
initial value problem, 224
integration

area, 231
area between curves, 293
average value, 272
by substitution, 277
definite, 231
and substitution, 286
Riemann Sums, 254

displacement, 267
fluid force, 332, 334
Fun. Thm. of Calc., 261, 265
general application technique, 292
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indefinite, 220
Mean Value Theorem, 270
notation, 220, 231, 265
of trig. functions, 284
Power Rule, 224
Sum/Difference Rule, 223
volume
cross‐sectional area, 300
Disk Method, 302
Shell Method, 313
Washer Method, 305

work, 322
Intermediate Value Theorem, 66

Left Hand Rule, 240, 245
limit

at infinity, 52
definition, 17
difference quotient, 13
does not exist, 11, 41
indeterminate form, 8, 51
left handed, 39
of infinity, 48
one sided, 39
properties, 25
pseudo‐definition, 8
right handed, 39
Squeeze Theorem, 30

linearization, 203

maximum
absolute, 143
and First Deriv. Test, 162
and Second Deriv. Test, 174
relative/local, 145

Mean Value Theorem
of differentiation, 153
of integration, 270

Midpoint Rule, 240, 245
minimum

absolute, 143
and First Deriv. Test, 162
and First Deriv. Test, 174
relative/local, 145

Newton’s Method, 212

optimization, 195

point of inflection, 170
Power Rule

differentiation, 101
integration, 224

Product Rule
differentiation, 110

Quotient Rule, 114

related rates, 187
Riemann Sum, 240, 244, 248

and definite integral, 254

Right Hand Rule, 240, 245
Rolle’s Theorem, 153

Second Derivative Test, 174
Shell Method, 313
signed area, 231
square wave, 275
Squeeze Theorem, 30
Sum/Difference Rule

of derivatives, 103
of integration, 223

summation
notation, 242
properties, 243

tangent line, 82
total signed area, 231

velocity, 96

Washer Method, 305
work, 322



Differentiation Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(f−1(x)) =
1

f ′(f−1(x))

7.
d
dx

(c) = 0

8.
d
dx

(x) = 1

9.
d
dx

(xn) = nxn−1

10.
d
dx

((f(x))n) = n(f(x))n−1f ′(x)

11.
d
dx

(ex) = ex

12.
d
dx

(ef(x)) = ef(x)f ′(x)

13.
d
dx

(ax) = ln a · ax

14.
d
dx

(ln x) = 1
x

15.
d
dx

(ln f(x)) = 1
f(x) f

′(x)

16.
d
dx

(loga x) = 1
x ln a

17.
d
dx

(sin x) = cos x

18.
d
dx

(cos x) = − sin x

19.
d
dx

(csc x) = − csc x cot x

20.
d
dx

(sec x) = sec x tan x

21.
d
dx

(tan x) = sec2 x

22.
d
dx

(cot x) = − csc2 x

23.
d
dx

(sin−1 x) = 1√
1−x2

24.
d
dx

(cos−1 x) = −1√
1−x2

25.
d
dx

(csc−1 x) = −1
|x|
√

x2−1

26.
d
dx

(sec−1 x) = 1
|x|
√

x2−1

27.
d
dx

(tan−1 x) = 1
1+x2

28.
d
dx

(cot−1 x) = −1
1+x2

29.
d
dx

(cosh x) = sinh x

30.
d
dx

(sinh x) = cosh x

31.
d
dx

(tanh x) = sech2 x

32.
d
dx

(sech x) = − sech x tanh x

33.
d
dx

(csch x) = − csch x coth x

34.
d
dx

(coth x) = − csch2 x

35.
d
dx

(cosh−1 x) = 1√
x2−1

36.
d
dx

(sinh−1 x) = 1√
x2+1

37.
d
dx

(sech−1 x) = −1
x
√

1−x2

38.
d
dx

(csch−1 x) = −1
|x|
√

1+x2

39.
d
dx

(tanh−1 x) = 1
1−x2

40.
d
dx

(coth−1 x) = 1
1−x2

Integration Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

(f(x)± g(x)) dx =
∫

f(x) dx±
∫

g(x) dx

3.
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx

4.
∫

f(g(x))g′(x) dx =
∫

f(u) du; u = g(x)

5.
∫

0 dx = C

6.
∫

1 dx = x+ C

7.
∫

xn dx =
1

n+ 1
xn+1 + C; n ̸= −1

8.
∫

ex dx = ex + C

9.
∫

ax dx =
1
ln a

· ax + C

10.
∫

ln x dx = x ln x− x+ C

11.
∫ 1

x
dx = ln |x|+ C

12.
∫

cos x dx = sin x+ C

13.
∫

sin x dx = − cos x+ C

14.
∫

tan x dx = − ln |cos x|+ C

15.
∫

sec x dx = ln |sec x+ tan x|+ C

16.
∫

csc x dx = − ln |csc x+ cot x|+ C

17.
∫

cot x dx = ln |sin x|+ C

18.
∫

sec2 x dx = tan x+ C

19.
∫

csc2 x dx = − cot x+ C

20.
∫

sec x tan x dx = sec x+ C

21.
∫

csc x cot x dx = − csc x+ C

22.
∫

cos2 x dx =
x
2
+

sin(2x)
4

+C

23.
∫

sin2 x dx =
x
2
−

sin(2x)
4

+C

24.
∫ 1

x2 + a2
dx =

1
a
tan−1 x

a
+ C

25.
∫ 1

√
a2 − x2

dx = sin−1 x
|a|

+ C

26.
∫ 1

x
√
x2 − a2

dx =
1
|a|

sec−1
∣∣∣∣ xa

∣∣∣∣+C

27.
∫

cosh x dx = sinh x+ C

28.
∫

sinh x dx = cosh x+ C

29.
∫

tanh x dx = ln(cosh x) + C

30.
∫

coth x dx = ln |sinh x|+ C

31.
∫

sec3 x dx =
1
2
(sec x tan x+ ln |sec x+ tan x|) + C

32.
∫ √

x2 + a2 dx =
x
2

√
x2 + a2 +

a2

2
ln
(
x+

√
x2 + a2

)
+ C

33.
∫ 1

√
x2 − a2

dx = cosh−1 x
a
+ C = ln

(
x+

√
x2 − a2

)
+ C; 0 < a < x

34.
∫ 1

√
x2 + a2

dx = sinh−1 x
a
+ C = ln

(
x+

√
x2 + a2

)
+ C; 0 < a

35.
∫ 1

a2 − x2
dx =

{
1
a tanh

−1 x
a + C, |x| < |a|

1
a coth

−1 x
a + C, |a| < |x|

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

36.
∫ 1

x
√
a2 − x2

dx = −
1
a
sech−1 |x|

a
+ C =

1
a
ln
∣∣∣∣ x
a+

√
a2 − x2

∣∣∣∣+ C; 0 < |x| < a

37.
∫ 1

x
√
x2 + a2

dx = −
1
a
csch−1 |x|

a
+ C =

1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C; x ̸= 0, a > 0



The Unit Circle

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2 , 1
2

)
45◦

π/4

(√
2

2 ,
√

2
2

)
60◦

π/3

(
1
2 ,

√
3

2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2 ,
√

3
2

)

135◦
3π/4

(
−

√
2

2 ,
√

2
2

)

150◦
5π/6

(
−

√
3

2 , 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√

3
2 ,− 1

2

) 225◦

5π/4(
−

√
2

2 ,−
√

2
2

)
240◦

4π/3

(
− 1

2 ,−
√

3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3

(
1
2 ,−

√
3

2

)

315◦

7π/4 (√
2

2 ,−
√

2
2

)

330◦
11π/6 (√

3
2 ,− 1

2

)

Definitions of the Trigonometric Functions
Unit Circle Definition

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

x

y

(x, y)

y

x

θ

Right Triangle Definition

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Identities
Pythagorean Identities

sin2 x+ cos2 x = 1
tan2 x+ 1 = sec2 x
1+ cot2 x = csc2 x

Cofunction Identities
sin( π2 − x) = cos x csc( π2 − x) = sec x
cos( π2 − x) = sin x sec( π2 − x) = csc x
tan( π2 − x) = cot x cot( π2 − x) = tan x

Even/Odd Identities
sin(−x) = − sin x csc(−x) = − csc x
cos(−x) = cos x sec(−x) = sec x
tan(−x) = − tan x cot(−x) = − cot x

Sum to Product Formulas

sin x+ sin y = 2 sin( x+y
2 ) cos( x−y

2 )

sin x− sin y = 2 sin( x−y
2 ) cos( x+y

2 )

cos x+ cos y = 2 cos( x+y
2 ) cos( x−y

2 )

cos x− cos y = 2 sin( x+y
2 ) sin( y−x

2 )

Power‐Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Double Angle Formulas
sin 2x = 2 sin x cos x
cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1
= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Product to Sum Formulas

sin x sin y = 1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y = 1

2
(
cos(x− y) + cos(x+ y)

)
sin x cos y = 1

2
(
sin(x+ y) + sin(x− y)

)
Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y
cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y

Domains and ranges of inverse trigonometric functions
Inverse Function Domain Range Inverse Function Domain Range

sin−1 x [−1, 1] [−π/2, π/2] csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]
cos−1 x [−1, 1] [0, π] sec−1 x (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]
tan−1 x (−∞,∞) (−π/2, π/2) cot−1 x (−∞,∞) (0, π)



Areas and Volumes

Triangles
h = a sin θ

Area =
1
2
bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone

Volume =
1
3
πr2h

Surface Area =

πr
√

r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h
Surface Area =

2πrh+ 2πr2
h

r

Trapezoids

Area =
1
2
(a+ b)h

b

a

h

Sphere

Volume =
4
3
πr3

Surface Area = 4πr2
r

Circles
Area = πr2

Circumference = 2πr r

General Cone
Area of Base = A

Volume =
1
3
Ah

h

A

Sectors of Circles
θ in radians

Area =
1
2
θr2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A
Volume = Ah

h

A



Algebra
Factors and Zeros of Polynomials

Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zerosmay be imaginary, a real polynomial
of odd degree must have at least one real zero.

Quadratic Formula

If p(x) = ax2 + bx+ c, then the zeros of p are x =
−b±

√
b2 − 4ac
2a

Special Factoring

x2 − a2 = (x− a)(x+ a) x3 ± a3 = (x± a)(x2 ∓ ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)

Binomial Theorem

(x+ y)2 = x2 + 2xy+ y2 (x+ y)3 = x3 + 3x2y+ 3xy2 + y3

(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x+ y)n =
n∑

k=0

(
n
k

)
xn−kyk

Rational Zero Theorem

If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s, where
r is a factor of a0 and s is a factor of an.

Factoring by Grouping

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations

ab+ ac = a(b+ c)
a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(

a
b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n(a

b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Additional Formulas

Summation Formulas
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule∫ b

a
f(x) dx ≈ ∆x

2
[f(x1) + 2f(x2) + 2f(x3) + · · ·+ 2f(xn) + f(xn+1)]

with Error ≤ (b− a)3

12n2
[max |f ′′(x)|]

Simpson’s Rule∫ b

a
f(x) dx ≈ ∆x

3
[f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + · · ·+ 2f(xn−1) + 4f(xn) + f(xn+1)]

with Error ≤ (b− a)5

180n4
[
max

∣∣f(4)(x)∣∣]

Arc Length

L =
∫ b

a

√
1+ f ′(x)2 dx

Work Done by a Variable Force

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x)

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n + · · ·

Standard Form of Conic Sections

Parabola Ellipse Hyperbola
Vertical axis Horizontal axis Foci and vertices Foci and vertices

on x‐axis on y‐axis

y =
x2

4p
x =

y2

4p
x2

a2
+

y2

b2
= 1

x2

a2
− y2

b2
= 1

y2

b2
− x2

a2
= 1



Summary of Tests for Series

Notation: Infinite series
∞∑
n=1

an with sequence of partial sums {Sn} = {a1 + a2 + a3 + · · ·+ an}

Test Series Convergence or Divergence Comment

Definition of
Series

∞∑
n=1

an series converges if and
only if {Sn} converges

used when a formula
for Sn can be found

Divergence
Test

∞∑
n=1

an diverges if lim
n→∞

an ̸= 0 no conclusion if
lim

n→∞
an = 0

Alternating
Series

±
∞∑
n=1

(−1)nbn
converges if bn > 0, {bn} is
decreasing, and lim

n→∞
bn = 0

check that conditions hold
eventually; no information

about divergence

Geometric
Series

∞∑
n=0

arn converges if and
only if |r| < 1 Sum=

a
1− r

Telescoping
Series

∞∑
n=1

bn − bn+m
converges if and only
if {Sn} converges

most terms of Sn
subtract away

p‐Series
∞∑
n=1

1
(an+ b)p

converges if and
only if p > 1 assumes an+ b ̸= 0

p‐Series For
Logarithms

∞∑
n=1

1
(an+ b)(log n)p

converges if and
only if p > 1

logarithm’s base doesn’t
affect convergence.

Integral Test
∞∑
n=1

an
converges if and only if∫ ∞

k
a(n) dn converges

an = a(n)must be
positive and decreasing

eventually

Direct
Comparison

∞∑
n=1

an,
∞∑
n=1

bn

0 < an ≤ bn

∑
bn converges ⇒

∑
an converges∑

an diverges ⇒
∑

bn diverges
consider geometric

or p‐series

Limit
Comparison

∞∑
n=1

an,
∞∑
n=1

bn

0 < an, bn

if lim
n→∞

an/bn = L
L > 0: both converge or diverge together
L = 0:

∑
bn converges ⇒

∑
an converges

L = ∞:
∑

bn diverges ⇒
∑

an diverges

consider geometric
or p‐series

Ratio/Root
Test

∞∑
n=1

an L =

 lim
n→∞

|an+1/an| Ratio Test

lim
n→∞

|an|1/n Root Test
L < 1: converges

L > 1 or L = ∞: diverges
L = 1: test indeterminate

use Ratio Test for
products, factorials, or

powers in terms

use Root Test for series of
the form an = (bn)n

Absolute convergence:
∞∑
n=1

|an| converges (and by Absolute Convergence Theorem,
∞∑
n=1

an converges)

Conditional convergence:
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges
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