RISK-OPENING POLYMERIZATION OF BETA-BUTYROLACTONE UTILIZING AMIDO-OXAZOLINATE ZINC COMPLEXES TO OBTAIN DEGRADABLE POLYMERS

Jhaiquashia Peterson, Muneer Shaik, Dr. Ed Kolodka, Dr. Guodong Du
Department of Chemistry, University of North Dakota, 151 Cornell Street, Grand Forks, ND 58202

OBJECTIVES

- Perform ring-opening polymerization of beta-butyrolactone utilizing amido-oxazolinate zinc complexes as catalysts and diol initiators to increase the chain length of linear polyesters with degradable properties.
- Employ nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) to characterize the polymer products.
- To achieve the goal, a Schlenk line was used for optimization of inert conditions.

BACKGROUND

- Plastics are commonly produced from petroleum-based materials.
- These structures of these materials typically do not break down easily, so they accumulate within the environment creating pollution.
- BBL is a petroleum-derived monomer whose structure contains an ester bond.

MATERIALS AND METHODS

Optimized Reaction

- Without initiator 1:200
- With initiator 1:1:200

Formation of Pure Reaction Mixture of ROP of BBL with a catalyst L10

RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Entry</th>
<th>Initiators</th>
<th>Mₐ (calc)</th>
<th>Mₐ (NMR)</th>
<th>Conv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>17326</td>
<td>17428</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>17334</td>
<td>17452</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>17359</td>
<td>18884</td>
<td>100</td>
</tr>
</tbody>
</table>

1°H NMR BBL + 1,4 Cyclohexanediol in CDCl₃

Polymerization of BBL with a catalyst L10

1°H NMR spectrum shows the expected coupling and splitting of the polymer chain protons as well as the initiator's presence and the hydroxyl polymer end groups.

REFERENCES